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a b s t r a c t

This paper presents a novel ranking framework for content-based multimedia information retrieval

(CBMIR). The framework introduces relevance features and a new ranking scheme. Each relevance

feature measures the relevance of an instance with respect to a profile of the targeted multimedia

database. We show that the task of CBMIR can be done more effectively using the relevance features

than the original features. Furthermore, additional performance gain is achieved by incorporating our

new ranking scheme which modifies instance rankings based on the weighted average of relevance

feature values. Experiments on image and music databases validate the efficacy and efficiency of the

proposed framework.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

We have witnessed a substantial progress in the acquisition
and storage of digital media such as images, video and audio.
With the rapid increase of digital multimedia collections, effective
and efficient retrieval techniques have become increasingly
important. Many existing multimedia information retrieval sys-
tems index and search the multimedia databases based on textual
information such as keywords, surrounding text, etc. However,
the text-based search suffers from the following inherent draw-
backs [1,2]: (i) the textual information is usually nonexistent or
incomplete with the emergence of massive multimedia data-
bases; (ii) the textual description is not sufficient for depicting
subjective semantics since different people may describe the
content in different ways; and (iii) some media contents are
difficult to be described in words.

To address these problems, content-based multimedia infor-
mation retrieval (CBMIR) is proposed and has attracted a lot of
research interest in recent years [1,3–6]. In a typical CBMIR
setting, a user poses a query instance to the system in order to
retrieve relevant instances from the database. However, due to
the semantic gap [3,4] between high-level concepts and low-level
ll rights reserved.
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features, the list returned by the initial search may not be good
enough to satisfy the user’s requirement. Thus, relevance feed-
back [7,8] is usually employed to allow the user to iteratively
refine the query information by labeling a few positive instances
as well as negative instances in each feedback round.

The performance of a CBMIR system relies on the accuracy of
its ranking results. Thus, ranking is the central problem in CBMIR,
and many researchers have endeavored to design a fast and
effective ranking method [1,4,5]. A key ingredient in ranking is
the measure used for comparing instances in the database with
respect to the query. Many existing methods (e.g., [9–11,2]) use
distance as the core ranking measure.

This paper presents a novel ranking framework for CBMIR
that does not use distance as the ranking measure, which is
fundamentally different from the above-mentioned methods.
Our framework uses some form of ranking models to produce a
relevance feature space. It first builds a collection of ranking
models and the output of each model forms a relevance feature.
Then, the models are used to map every instance from the original
feature space to a new space of relevance features. Finally, the
ranking and retrieval of instances, based on one query and
relevance feedbacks, are computed in the new space using our
proposed ranking scheme, which ranks instances based on the
weighted average of relevance feature values.

Our analysis shows that the power of the proposed framework
derives primarily from the relevance features and secondarily
from the ranking scheme. The framework has linear time and
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space complexities with respect to the database size. The on-line
processing time is constant when the number of relevance
features is fixed, no matter how many original features are used
to represent an instance. These characteristics enable the pro-
posed framework to scale up to large databases. In addition, our
framework has a good tolerance to irrelevant features.

The rest of this paper is organized as follows. Section 2 reviews
related work. Section 3 introduces our framework, followed by
a detailed description in Section 4. Section 5 reports empirical
studies, and Section 6 discusses related issues. Finally, this paper
concludes in Section 7.
2. Related work

Many ranking methods employ distance as the core ranking
measure [1,4,5]. In the case of retrieval with one query without
relevance feedback, the majority of previous works have focused
on different variants of distance metrics. The simplest way is to
use a single distance metric, e.g., Euclidean distance or Manhattan
distance. Here instances that lie near to a given query are ranked
higher than instances far away from the query. However, these
distance metrics are global measures and they might not produce
the best results for all queries. Thus, researchers have investigated
distance metrics that can be tailored to each query. For example,
based on the manifold ranking algorithm [12], He et al. [9] have
proposed the MRBIR method which implicitly learns a manifold
metric to produce rankings.

In relevance feedback, the additional information provided by
the user offers more flexibility in the design of effective ranking
methods. Here the query and positive feedbacks are usually
considered as positive instances, and negative feedbacks are nega-
tive instances. The refinement can be done in three ways. First, the
distance metric for the initial query session can be refined based
on pair-wised distance constraints derived from positive and
negative instances. Commonly used techniques include distance
metric learning [13,14], kernel learning [15], and manifold learning
[16,17].

Second, instead of refining the distance metric, we can also
tackle the problem by designing appropriate ranking schemes. For
example, MARS (Multimedia Analysis and Retrieval System) [18]
employs a query-point movement technique which estimates the
‘‘ideal query point’’ by moving it towards positive instances and
away from negative ones. The ranking is produced by measuring
distance with respect to the ideal query after the movement.
Giacinto and Roli [10] proposed the InstRank method based
on the idea that an instance is more likely to be relevant if
its distance to the nearest positive instance is small, while an
instance is more likely to be irrelevant if its distance to the
nearest negative instance is small. Qsim [11] advocates ranking
instances based on the query-sensitive similarity measure, which
takes into account the queried concept when measuring simila-
rities. Note that these methods are all based on some predefined
or learned distance metrics.

Third, some methods transform the CBMIR problem into a
classification problem, and solve it using classification techniques
such as support vector machine [19] and Bayesian method [2].
A representative method called BALAS [2] first estimates the
probability density function of positive and negative classes, and
then the ranking is produced within a Bayesian learning framework.
However, most classification methods are designed to classify
instances into a fixed number of classes and are not designed for
ranking instances. Thus, the ranking results might be suboptimal.

This paper proposes to rank instances through a new frame-
work that does not require distance calculation—a computation-
ally expensive process. This is fundamentally different from most
existing methods. Our framework is able to deal with retrieval
tasks with one query as well as in relevance feedback. In contrast,
most of the above-mentioned methods were designed to be used
in relevance feedback only, e.g., InstRank, Qsim and BALAS.

Note that meta-search [20] employs an ensemble of ranking
models for information retrieval. However, this technique aims at
improving the retrieval performance by combining the ranking
results returned by multiple search engines. This is a different
problem from the one we addressed. It is also worth noting that
Rasiwasia et al. [21] proposed the query-by-semantic-example
method which maps and retrieves instances in a semantic space.
Here a set of semantic-level concepts has to be predefined in
order to construct the semantic features. On the contrary, the
relevance features used in this paper are automatically generated—

users do not need to specify them.
3. The proposed framework

Generally speaking, a CBMIR system is composed of four parts
[22]: (i) a given multimedia database D; (ii) a query Q; (iii) a
model FðQ,DÞ to model the relationships between instances in Q
and D; and (iv) a ranking scheme RðD9QÞ which defines an
ordering among the database instances with respect to Q. On
the other hand, a ranking system consists of three components:
(i) a given data set D̂; (ii) a model F̂ðD̂Þ to model the relationships
between instances in D̂; and (iii) a ranking scheme R̂ðD̂Þ which
produces an ordering for all the instances in D̂. Ranking in CBMIR
are typically provided by distance metrics. In this work, we show
an alternative method, that is more suitable for CBMIR, using an
ensemble of ranking systems.

Here, we propose to map the database D from the original
d-dimensional feature space Rd into a new space Rt to form a
new database D0 by using an ensemble of t ranking models, i.e.,
~F ¼ ½F̂1,F̂2, . . . ,F̂t�. Each ranking model is regarded as a feature
descriptor, and the ranking output is the feature value; for an
instance, the t ranking outputs from the t ranking models
constitute the new t-dimensional feature vector. Given a query
Q, we first map it into the new space to obtain Q0, and then we
employ a ranking scheme R0ðD09Q0Þ to rank the instances in D0.
Note that R0 can be any existing ranking scheme. But we propose a
new ranking scheme based on the weighted average of relevance
feature values to avoid the costly distance or similarity calcula-
tion. We show in this paper that the ensemble of ranking models,
i.e., ~F, can be implemented using an anomaly detector called
Isolation Forest, or iForest [23].

iForest builds an ensemble of isolation trees (or iTrees) to
detect anomalies. Each iTree is constructed on a fix-sized random
sub-sample of the given data set. The tree growing process
recursively random-partitions the sub-sample along axis-parallel
coordinates until every instance is isolated from the rest of the
instances or a specified height limit is reached. Each iTree is a
ranking model which describes a data profile from the view of the
underlying sub-sample and produces a ranking output in terms of
path length for any test instance. The ranking output can be
interpreted as: a short path length indicates irrelevance to the
profile because an instance, which has different data character-
istics from the majorities, is easily isolated by a few random
partitions; on the other hand, a long path shows relevance to the
profile. For anomaly detection tasks, instances identified to be
irrelevant to the various profiles modeled by a number of iTrees
are deemed to be anomalies, and instances relevant to the profiles
are normal points. The algorithms to produce iTree and iForest are
provided in Appendix A.

In our framework, we first build an iForest, which is composed
of t iTrees, to map instances from the original feature space to the
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relevance feature space, i.e., Rd-Rt . Different iTrees profile
different aspects of the multimedia database. We treat each iTree
as a feature descriptor, and the feature value (i.e., path length) is a
measure of relevance with respect to the profile modeled by the
iTree. The representation of an instance in the new space is a
vector of relevance features; hence the name relevance feature

mapping. To implement R0ðD09Q0Þ, we have also designed a new
ranking scheme based on the weighted average of relevance
feature values. We call our framework ReFeat which refers to
the retrieval based on Relevance Feature mapping.
1 Structure (d) is an exception but it still stipulates the neighborhood region

by at least two splitting conditions. We include (d) here to facilitate the following

analysis.
4. ReFeat

ReFeat has two stages. The first off-line modeling stage builds
an iForest to perform relevance feature mapping and the second
on-line retrieval stage ranks instances with respect to the query. We
first describe the two stages in the next two subsections, followed
by explaining why our ranking scheme works in Section 4.3. We
then provide our treatment for relevance feedback in Section 4.4.
The algorithmic complexity is analyzed in the last subsection.

4.1. Off-line modeling and relevance feature mapping

In off-line modeling, we build an iForest from the given
database D. Here t iTrees are constructed, each built on a sub-
sample of randomly selected c instances from D. After iForest is
built, D is mapped to D0 as follows.

Let ‘iðxÞ denotes the path length of an instance xAD on an
iTree Ti (iAf1;2, . . . ,tg). We map x to the relevance feature space
as: x0 ¼ ½‘1ðxÞ,‘2ðxÞ, . . . ,‘tðxÞ�

T . All the instances in D are mapped
through the relevance feature mapping to form a new database
D0 ¼ fx098xADg. Note that this stage does not require any user
intervention. Thus, D0 is generated off-line to accelerate the
following on-line retrieval process.

4.2. On-line retrieval with one query

Given a query instance q, ReFeat maps it to q0 ¼ ½‘1ðqÞ, . . . ,
‘tðqÞ�

T . To retrieve instances relevant to q, we first assign a weight
to each feature due to q: a high weight is assigned to a feature
which signifies that q is relevant to the profile modeled by
the feature; otherwise, a low weight is assigned. Then the ranking
score for every instance in the database is computed using
a weighted average of its relevance feature values. The instances
having the highest scores are regarded to be the most relevant
to the query. To implement this, we define a weight for feature
i as:

wiðqÞ ¼
‘iðqÞ

cðcÞ
�1: ð1Þ

cðcÞ is a normalization term which estimates the average path
length of a c-sized iTree. The cð�Þ function is defined as follows [23]:

cðnÞ ¼
2ðlnðn�1Þ�ðn�1Þ=nþEÞ if n41,

0 if n¼ 1,

(
ð2Þ

where E� 0:5772 is the Euler’s constant.
Finally, the ranking score of an instance x with respect to the

query q is given by the weighted average of feature values:

Scoreðx9qÞ ¼
1

t

Xt

i ¼ 1

ðwiðqÞ � ‘iðxÞÞ: ð3Þ

Eq. (3) gives high scores to instances which have long path lengths on
many highly weighted features induced by the query; and it produces
low scores to instances which have short path lengths on many lowly
weighted features. Scoreðx9qÞ can be negative. If required, strictly
positive scores can be produced by using an exponential mapping.
For the rest of this paper, we refer to the ranking based on the
weighted average of feature values as our ranking scheme.

It is worth noting that the off-line modeling of iForest utilizes
no distance or similarity measure [23], and the proposed on-line
ranking scheme also avoids distance or similarity calculation
through Eqs. (1) and (3). This characteristic differentiates ReFeat
from most existing methods which are based on certain distance
or similarity measures.
4.3. Understanding the ranking scheme

Our ranking scheme is based on the idea that similar instances
share many relevance features with long path lengths from
iTrees; whereas dissimilar instances have many relevance fea-
tures with short path lengths.

A region defined by a long path length in an iTree has many same
splitting conditions, where each condition is defined by an internal
node along the path from the root to the external node. Thus,
intuitively, instances falling into each of these regions (defined by
long path lengths) are likely to be more similar than those instances
falling into other regions. This explains why we use Eq. (1) to assign
high weights to iTrees where the query is estimated to have long
path lengths—a big contribution to the relevance score through
Eq. (3) if the test instance also achieves long path lengths on these
iTrees. On the other hand, if an instance is estimated to have a short
path length on an iTree, then it is most likely to be different from the
instances falling into the regions defined by long-path-length
external nodes. Thus, Eq. (1) assigns negative weights to the iTrees
in which the query has short path lengths—via Eq. (3) to penalize
the test instances with long path lengths in these iTrees. In addition,
if the query is estimated to have a path length around cðcÞ, then we
simply assign a small or zero weight because instances having
similar path lengths are likely to be in different regions.

In the following paragraphs, we first provide the topologically
distinct iTree structures in the setting we have used in our
experiment. Then, we show that the majority of iTrees produced
from a database have distinct long and short path lengths that
allow our scheme to identify similar instances from dissimilar
ones through ranking.

The parameters we have used in the experiment are: the sub-
sample size c¼ 8 and the height limit h¼ dlog2ce ¼ 3. This
produces a total of 17 topologically distinct tree structures as
shown in Fig. 1. To obtain the path length of an instance x from an
iTree, x traverses from the root of the iTree to an external node;
and the path length is computed as the number of edges traversed
plus the estimated average path length of an unbuilt subtree from
a sample of Size instances which is cðSizeÞ, where Size is the
number of sub-sample instances at the external node and cð�Þ is
defined in Eq. (2). Note that out of the 17 structures depicted in
Fig. 1, structures (a)–(g) all have the minimum path length equal
to 1; and structures (h)–(p) have the minimum path length equal
to 2. These structures have the maximum path lengths vary
from 3þc(5), 3þc(4), 3þc(3) to 3þc(2). Only structure (q) is a
balanced tree which gives the same path length for all instances.

An iTree is only useful if it is imbalanced and provides long and
short path lengths that differentiate similar and dissimilar
instances. It is also preferred to have the maximum path length
in only one external node that uniquely identifies the neighbor-
hood region. A total of 10 structures, i.e., (a)–(f) and (h)–(k), satisfy
this essential property,1 where the maximum path lengths are



Fig. 1. The 17 unique iTree structures with c¼ 8 and h¼3. Circles (J) denote internal nodes, and squares (&) are external nodes. The figure in an external node indicates

the number of sub-sample instances split in the node, i.e., the ‘‘Size’’ of the node.

G.-T. Zhou et al. / Pattern Recognition 45 (2012) 1707–17201710
3þc(5), 3þc(4) and 3þc(3). A total of six structures, i.e., (g) and
(l)–(p), are also good by providing short path lengths. An iTree like
structure (q) which gives the same path length for all instances is
useless for our purpose.

We employ d, which is the difference between the maximum
path length and the minimum path length of an iTree, to indicate
how imbalance the iTree is. Out of the 17 topologically distinct
tree structures, we have only eight d values: 0, 1þc(2), 2þc(2),
1þc(3), 1þc(4), 2þc(3), 2þc(4), and 2þc(5), which range from
balanced tree (q) to highly imbalanced tree (a).

Using the COREL image database [24], we generate 1000 iTrees
and then tally the number of trees for each d value. Fig. 2(a) shows
the result: more than 75% of the iTrees have dZ1þcð3Þ which
represents the 10 imbalanced iTree structures (a)–(f) and (h)–(k).
The near-balanced trees (having 0odr2þcð2Þ) constitute about
23% of the iTrees which represents the six structures (g) and
(l)–(p). The balanced iTrees constitute less than 1%. The result
shows that the majority of the generated iTrees are useful for
identifying similar instances as well as dissimilar instances.

To further enhance the understanding, we provide statistics of
the path lengths in the following case study. We select a rose
image (Fig. 2(b)) from the COREL database as a query. Another
rose image (Fig. 2(c)) is considered as relevant, and a beach image
(Fig. 2(d)) is treated as irrelevant. We estimate the path lengths of
the three images on the above-generated 1000 iTrees. Considering
the 17 distinct iTree structures, we have seven possible path
length values ranging from the longest to the shortest: 3þc(5),
3þc(4), 3þc(3), 3þc(2), 3, 2, and 1. We then divide the 1000
iTrees into seven categories based on the query’s path lengths. In
each category, we calculate the proportion of iTrees that produce
different path lengths for the relevant image and the irrelevant
image, and the results are provided in Table 1. It shows that: on
highly weighted iTrees (in which the query has long path lengths,
shown in top rows in Table 1(a) and (b)), the relevant image has
significantly more long path lengths than the irrelevant image; on
negatively weighted iTrees (in which the query has short path
lengths, shown in bottom rows in Table 1(a) and (b)), the relevant
image has noticeably less long path lengths. This explains why the
relevant image scores larger than the irrelevant one through Eq.
(3) in our ranking scheme. In this case, the scores for relevant and
irrelevant images are 1.14 and 0.89, respectively.

Also notice that the similarity between the relevant image and
the query is implied by the high proportion of iTrees when the
path length is matched between the two images (see the numbers
in the diagonal of Table 1(a)). The corresponding proportions of
iTrees are significantly less between the irrelevant image and the
query image, shown in Table 1(b).
4.4. On-line retrieval in relevance feedback

If feedbacks are available, we use them to refine the retrieval
result by modifying the feature weights. Here the query is
denoted by Q¼P [N , where P is the set of positive feedbacks
and the initial query; and N is the set of negative feedbacks. Begin
with the initial query q, they are initialized as follows: P ¼ fqg and
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Fig. 2. Statistics of iTrees and the sample images used in our case study. (a) The proportions of 1000 iTrees with different d values. (b) Query image. (c) Relevant image.

(d) Irrelevant image.

Table 1
The proportion (%) of iTrees that produce different path lengths for the relevant

image (Fig. 2(c)) and the irrelevant image (Fig. 2(d)) out of the number of iTrees

that estimate a specified path length for the query (Fig. 2(b)). For this query image,

the numbers of iTrees having path lengths 3þc(5), 3þc(4), 3þc(3), 3þc(2), 3, 2,

1 are 79, 99, 121, 162, 268, 189, 82, respectively.

Query’s path

length

Proportion of iTrees with path length

3þc(5) 3þc(4) 3þc(3) 3þc(2) 3 2 1

(a) Relevant image

3þc(5) 83.5 N/A N/A N/A 3.8 7.6 5.1

3þc(4) N/A 77.8 N/A 3.0 8.1 4.0 7.1

3þc(3) N/A N/A 73.6 8.3 7.4 7.4 3.3

3þc(2) N/A 1.2 5.6 74.1 9.3 5.6 4.3

3 1.9 1.5 7.1 6.3 75.7 4.5 3.0

2 2.1 3.2 4.2 4.8 7.4 77.2 1.1

1 4.9 4.9 3.7 2.4 3.7 2.4 78.0

(b) Irrelevant image

3þc(5) 29.1 N/A N/A N/A 19.0 15.2 36.7
3þc(4) N/A 33.3 N/A 7.1 21.2 23.2 15.2

3þc(3) N/A N/A 29.8 8.3 20.7 26.4 14.9

3þc(2) N/A 3.1 6.2 24.7 32.7 21.0 12.3

3 1.9 7.8 12.7 17.9 29.9 19.0 10.8

2 9.0 11.1 14.8 15.3 23.8 18.5 7.4

1 17.1 15.9 11.0 7.3 29.3 9.8 9.8
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N ¼Ø. Then, P and N are enriched with the instances labeled by
the user in the relevance feedback process.

If only positive feedbacks are provided, ReFeat puts them in P
and calculates the feature weights in the same way as that for the
initial query. Formally, ReFeat defines the weight of feature i due
to a positive feedback zþ AP as:

wþi ðz
þ Þ ¼

‘iðz
þ Þ

cðcÞ
�1: ð4Þ

Then the resultant weight for feature i due to P is obtained by
averaging the weights produced by all the positive instances in P:

wþi ðPÞ ¼
1

9P9
X9P9
k ¼ 1

wþi ðz
þ

k Þ: ð5Þ

Here 9 � 9 denotes the size of a set. Now by replacing wiðqÞ with
wþi ðPÞ in Eq. (3), a new ranking score can be produced for each
instance and a refined retrieval result is returned to the user.
When negative feedbacks are also provided in relevance feed-
back, ReFeat puts them in N and defines the weight in an
opposite way as for the initial query: a high weight is assigned to
a feature which signifies that a negative feedback is irrelevant to
the profile modeled by the feature; otherwise, a low weight is
assigned. To implement this, ReFeat calculates the weight for
feature i due to a negative feedback z�AN as:

w�i ðz
�Þ ¼ 1�

‘iðz
�Þ

cðcÞ
: ð6Þ

The resultant weight for feature i due to N is generated by
averaging over all negative instances in N :

w�i ðN Þ ¼
1

9N 9

X9N 9

s ¼ 1

w�i ðz
�
s Þ: ð7Þ

Now the final weight for feature i can be obtained by
aggregating wþi ðPÞ and w�i ðN Þ. The aggregation can be realized
in different ways. Here we use a simple summing method:
wiðQÞ ¼wþi ðPÞþgw�i ðN Þ, where gAð0;1� is a trade-off parameter
accounting for the relative weights of the contributions between
positive and negative instances. It is reasonable that positive
instances make more contribution to the final ranking than
negative ones. Since the farther an instance lies from positive
instances, the less likely that it is a relevant one. However, we can
not draw an opposite conclusion for negative instances: if an
instance lies far from negative instances, it is not necessarily
relevant, since it may be far from positive instances too. Similar
strategies were employed in previous works (e.g., [9,11]). The
empirical study presented in Section 5.2.6 also shows the efficacy
of this strategy.

Finally, ReFeat estimates the ranking score for every instance
in the database using Eq. (3) (by replacing wiðqÞ with wiðQÞ), and
returns the instances by ranking them in a descending order
according to their scores.

4.5. Complexity

We now analyze the time complexity of ReFeat. In the off-line
modeling stage, building the iForest model takes Oðtc log cÞ and
the mapping from D to D0 costs Oð9D9t log cÞ [23]. Thus, the total
time complexity is Oðð9D9þcÞt log cÞ. In the on-line retrieval
stage, the relevance feature mapping for the query costs



Table 2
Time complexities of ReFeat, Euclidean, InstRank [10] and Qsim [11] for

on-line retrieval. Here d is the original dimension of the multimedia database D.

InstRank and Qsim are methods dealing with relevance feedback only.

Method With one query In relevance feedback

ReFeat Oðð9D9þ log cÞ � tÞ Oðð9D9þ9Q9Þ � tÞ

Euclidean Oð9D9� dÞ N/A

InstRank N/A Oð9D9� 9Q9� dÞ

Qsim N/A Oð9D9� 9Q9� ðdþ9P9ÞÞ
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Oðt log cÞ, calculating weights takes Oð9Q9tÞ, and producing rank-
ing scores for all instances in the database costs Oð9D9tÞ. Thus, for
a query session, ReFeat has a time complexity of Oðð9D9þ9Q9þ
log cÞtÞ. It is worth noting that 9Q9 is much smaller than 9D9, and
both t and c are fixed at the beginning of the off-line modeling
stage which do not change in on-line retrieval. Thus, ReFeat has
a linear time complexity with respect to 9D9 in both the off-line
modeling stage and the on-line retrieval stage, which makes it
possible to scale up to large multimedia databases. Table 2 lists
the time complexities of ReFeat as well as three other methods
for on-line retrieval. It shows that ReFeat has a relatively low
time complexity in on-line retrieval although it needs an addi-
tional modeling stage. Note that we also compare BALAS and
MRBIR in our experiments. Although it is difficult to analyze their
complexities, the experimental results show that BALAS and
MRBIR usually spend much longer time than ReFeat.

The space requirement of our off-line model is also linear with
respect to 9D9, since the database D0 costs Oð9D9tÞ and iForest
requires Oðð2c�1ÞtbÞ memory space only [23], where b is the
memory size taken by a tree node.
5. Experiments

The performance of ReFeat is evaluated with content-based
image and music retrieval tasks on COREL image database (which
is used in [24]) and GTZAN music database [25], respectively. The
image database consists of 10 000 COREL images that are col-
lected from 100 categories such as car, forest, sunset, tiger, etc.;
each category contains 100 images. As in [24], each image is
represented by a 67-dimensional feature vector which consists of
32 color features generated by HSV histogram, 24 texture features
derived from Gabor wavelet transformation and 11 shape features
including invariant moments, center coordinates, area and prin-
cipal axis orientation. The music database contains 1000 songs
which are uniformly distributed over 10 genres including classi-
cal, country, disco, hiphop, jazz, rock, blues, reggae, pop, and
metal. Each song is a 30-second excerpt which is stored as a
22 050 Hz, 16-bit, mono-audio file. Following the feature extrac-
tion steps in [26], we split each song into 3-second segments,
where a MFCC [25] feature vector is extracted from each segment
and the top 20 MFCC coefficients are kept to represent the
segment. The mean and the lower-triangular covariance matrix
of MFCC features are calculated and concatenated into a 230-
dimensional feature vector to represent the song. Note that there
is no feature selection although it may be beneficial. The same
features are used by all the compared methods because we are
only interested in the relative instead of absolute performance of
the methods.

Our experiments study the retrieval performance of ReFeat
both with one query and in relevance feedback. The initial queries
are chosen as follows: for the image database, we randomly select
five images from each category to obtain 500 initial queries; and
for the music database, we use every song in the whole database
and there are a total of 1000 initial queries. For a query, the
images/songs within the same category/genre are regarded as
relevant and the rest are irrelevant. We continue to perform
five rounds of relevance feedback for each query. In each round,
we randomly select two relevant and two irrelevant instances
as positive and negative feedbacks, respectively. Note that an
instance will not be considered for selection if it has been chosen
as a feedback in previous rounds. To simulate different users’
behavior, this relevance feedback process is repeated five times,
each with a different random series of feedbacks. Finally, we
report the average result over multiple runs for the initial query
and the subsequent rounds of feedback.

PR-curve is a commonly used performance measure in infor-
mation retrieval. It depicts the relationship between precision and
recall of a retrieval system. In the experiments, we employ PR-
curve to evaluate the retrieval performance with one query.
However, in relevance feedback, a single PR-curve is not enough
to reveal the performance changes with the increasing number
of feedbacks. Thus, we use Mean Average Precision (MAP) and
Precision at N (P@N) [4]. MAP is the average of precisions
computed at the point of each of the relevant instances in the
ranked sequence. P@N records the fraction of relevant instances in
the top-N ranked instances, and we empirically set N¼50 in the
following experiments. The higher the MAP and P@N values, the
better the performance. Notice that previous works (e.g., [10,11])
have included feedback instances in the evaluation of retrieval
performance. However, this calculation inflates the performance
since the feedbacks are labeled instances that should not be
displayed to the user. Thus, we have excluded feedbacks in our
performance evaluation.

The efficacy and efficiency of ReFeat are validated in the next
subsection, followed by empirical studies showing the effective-
ness of the relevance feature mapping, the utility of our ranking
scheme, the influence of increasing database dimension, and the
effect of different parameter settings in ReFeat. All the experi-
ments are conducted on a Pentium 4 machine with a 1.86 GHz
CPU and 2 GB memory.

5.1. Comparison with existing methods

In this subsection, we first compare ReFeat with the Euclidean
distance based method and a manifold ranking method MRBIR [9]
when no relevance feedback is performed. Then with relevance
feedbacks, Qsim [11], InstRank [10], MRBIR [9] and BALAS [2] are
employed for benchmarking. Here Qsim and InstRank are methods
for improving ranking calculation, and BALAS is a Bayesian learning
method. Because Qsim and InstRank are proposed to be used only
in relevance feedback for improving similarity calculation, we
employ Euclidean distance to measure the relevance so that they
can deal with query without feedbacks. BALAS also does not mean
to work with single query and there is no comparison of BALAS for
retrieval with one query. Note that we also include the chance
performance of random method (called Random) as a baseline
method.

There are three parameters in ReFeat: number of relevance
features t, sub-sample size c and trade-off parameter g. ReFeat is
not very sensitive to g when gA ½0:1,0:4�, and we set g¼ 0:25 for
both the image and music databases. The values of t and c are
problem-dependent. We set t¼1000, c¼ 8 for the image data-
base, and t¼1000, c¼ 4 for the music database. The effect of
the three parameters on the performance of ReFeat is studied in
Section 5.2. For MRBIR, we keep the default parameter settings as
in [9]: 200 nearest neighbors are used for constructing the
weighted graphs; the contribution of negative ranking scores is
weighted by 0.25; the trade-off parameter a is set to be 0.99
in the manifold ranking algorithm, which iterates 50 rounds to
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Fig. 3. PR-curves of ReFeat, Euclidean, MRBIR and Random for retrieval with one query. (a) COREL image database. (b) GTZAN music database.

Table 3
A detailed comparison (average MAP (�10�2), average P@50 (�10�2) and t-test)

of ReFeat against Euclidean and MRBIR for retrieval with one query.

Method COREL image database GTZAN music database

MAP P@50 MAP P@50

ReFeat 9.11 15.64 31.06 37.59

Euclidean 4.76 8.97 28.94 36.18

MRBIR 7.03 11.99 29.27 37.74

t-test results of ReFeat against:

Euclidean 4.6�10�28 1.4�10�29 2.7�10�14 2.0�10�4

MRBIR 2.3�10�7 2.5�10�9 1.9�10�10 0.7199
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obtain the final results. The only difference lies in the setting of dl

in computing Laplacian kernels: while [9] empirically sets
dl ¼ 0:05, we select the best dl from {0.0125,0.025,0.05,0.1,0.5,1}
and use 0.05 for the image database and 0.025 for the music
database. For BALAS, we generate five random instances to
represent each negative feedback (in addition to the feedback
instances selected from the database) to enable the estimation of
the probability density function. The threshold for determining
high trustworthy dimensions is kept to be 0.7 as in [2]. Qsim and
InstRank do not have parameters that need to be set.

5.1.1. Retrieval with one query

The PR-curves of ReFeat, Euclidean, MRBIR and Random for
retrieval with one query are presented in Fig. 3. It shows that on
the image database, ReFeat outperforms the other three com-
pared methods, and MRBIR is better than Euclidean; and on the
music database, ReFeat is better than Euclidean, MRBIR and
Random on most recall values, except that MRBIR achieves the
best precision when the recall value r0:2.

We also provide a detailed comparison in Table 3 to gain further
insight into the advantages of ReFeat. For each initial query, we
calculate the MAP and P@50 values using every compared method,
and present the average results in Table 3. A paired t-test at 5%
significance level is performed for the MAP (and P@50) series over
all queries, and we record the probability of rejecting the hypothesis
that ReFeat is significantly better than the compared method. The
average results in Table 3 reveal that ReFeat performs better than
Euclidean and MRBIR, and the t-test results show that the
difference is statistically significant. The only exception is that
ReFeat achieves no significant result against MRBIR on the music
database. These observations reveal the superior performance of
ReFeat for retrieval with one query.

5.1.2. Retrieval in relevance feedback

Fig. 4 shows the MAP and P@50 results for retrieval in
relevance feedback. Note that round 0 presents the retrieval
performance with one query only, and Euclidean is used as
the base method for Qsim and InstRank.

It is found in Fig. 4 that as the number of feedback rounds
increases, the retrieval performance of most methods tends to
improve. However, BALAS performs poor on the music database,
and we suspect that this might be caused by the violation of
feature independent assumption on the music database. Never-
theless, Fig. 4 clearly reflects that ReFeat achieves the best MAP
and P@50 no matter how many feedbacks are provided. Since
ReFeat has superior performance with both one query and
relevance feedbacks, we can conclude that ReFeat is highly
effective for CBMIR.

5.1.3. Processing time

The average on-line processing time of all compared methods
is tabulated in Table 4 where the shortest time at each round is
boldfaced. Note that the processing time for retrieval with one
query is reported in round 0, where the time costs of Qsim and
InstRank are filled by that of Euclidean.

Table 4 shows that ReFeat has the best efficiency except that
it spends a bit more time than Euclidean for retrieval with one
query on the image database. This implies that Euclidean

prefers low-dimensional databases and ReFeat is more efficient
on high-dimensional databases. We have provided a detailed
analysis in Section 5.2.3 on how the database dimension influ-
ences the retrieving time of the compared methods. Note that
ReFeat achieves the shortest and near constant processing time
regardless of the feedback round. The time is independent of the
number of feedbacks because the time complexity of ReFeat for
retrieval in relevance feedback, i.e., Oðð9D9þ9Q9Þ � tÞ (as shown in
Table 2), is dominated by Oð9D9� tÞ as 9Q959D9. InstRank also
has a near constant time cost because the distances calculated
in previous feedback rounds are saved for the following rounds.
MRBIR has to iteratively update the ranking result with expens-
ive large matrix operations, resulting in the highest on-line
retrieval time.

Although ReFeat has an off-line modeling stage, it costs only
2.87 s for the image database containing 10 000 images and 0.33 s
for the music database containing 1000 songs, respectively. We
believe that it pays to employ such an off-line modeling stage
because of the good retrieval performance and quick processing
time achieved by ReFeat for on-line retrieval.
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Fig. 4. Average MAP and P@50 values of ReFeat, Qsim, InstRank, MRBIR, BALAS and Random for retrieval in relevance feedback. (a) COREL image database: MAP.

(b) COREL image database: P@50. (c) GTZAN music database: MAP. (d) GTZAN music database: P@50.

Table 4
Average on-line processing times (in millisecond) of ReFeat (RF), Qsim (QS),

InstRank (IR), MRBIR (MR) and BALAS (BA).

Round RF QS IR MR BA

(a) COREL image database

0 27.2 24.7 24.7 612.9 N/A

1 23.8 71.3 32.6 1172.4 262.8

2 24.0 146.3 33.4 1172.3 317.5

3 24.2 261.9 34.2 1172.3 373.0

4 24.4 417.9 34.9 1172.2 437.9

5 24.5 615.8 35.5 1172.1 506.0

(b) GTZAN music database

0 3.6 10.8 10.8 168.1 N/A

1 3.1 16.6 14.1 279.0 152.2

2 3.3 20.9 14.2 279.5 160.2

3 3.4 27.4 14.3 279.3 166.7

4 3.6 36.7 14.3 278.6 173.2

5 3.7 47.8 14.4 280.5 180.3
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5.2. Analysis

This subsection analyzes some important issues in relation to
ReFeat. We first empirically validate the effectiveness of the
relevance feature mapping and our ranking scheme. Then we
show the influence of increasing database dimension on the
compared methods. At the end of this subsection, we study the
effect of the three parameters in ReFeat and give some guide-
lines for selecting them. Note that the same conclusion can
always be made for both MAP and P@50. Thus, we only provide
the MAP results hereafter.
5.2.1. Relevance feature mapping

Recall that ReFeat is a two-stage process, where the first
maps database instances to a relevance feature space, and the
second ranks the instances in the new space. We conduct
experiments to show the effectiveness of our relevance feature
mapping in this subsection, and the efficacy of the proposed
ranking scheme is validated in the next subsection.

Previous experiments have already shown that ReFeat out-
performs existing methods which are conducted in the original
feature space. Here, we hypothesize that the performance of
existing methods can be improved using our relevance features.
Thus, we perform three distance based methods, i.e., Qsim,
InstRank and MRBIR, in our relevance feature space. The new
methods are named Qsim-RF, InstRank-RF and MRBIR-RF,
respectively. Table 5 presents the MAP results which are grouped
in pairs for ease of comparison. Exactly the same relevance
feature mapping is employed for all methods that use it. Note
that round 0 gives the results with one query, and the Euclidean
method performed in the original feature space is used as the
base method for Qsim and InstRank. Similarly, Euclidean dis-
tance measured in the relevance feature space is employed by
Qsim-RF and InstRank-RF at round 0.

As shown in Table 5, with the help of the relevance feature
mapping, Qsim-RF, InstRank-RF and MRBIR-RF significantly
outperform their original versions, i.e., Qsim, InstRank and
MRBIR, respectively. There are two exceptions on the music
database: the first is InstRank-RF which performs worse than
InstRank, and the second is for retrieval with one query,
Euclidean performs slightly better in the original space. Never-
theless, these observations show that our relevance feature space
is more suitable for retrieval than the original space, and thus, we
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can conclude that the power of ReFeat is largely derived from
the relevance feature mapping.

We also report the on-line processing time in Table 6. The time
costs of Qsim-RF and InstRank-RF are expected to be longer
than each of the original versions because the dimensionality of
the relevance feature space is significantly higher than that of the
Table 6
Average on-line processing time (in millisecond) of ReFeat (RF), Qsim-RF

(QS-RF), Qsim (QS), InstRank-RF (IR-RF), InstRank (IR), MRBIR-RF (MR-RF)

and MRBIR (MR). The figures boldfaced are the smallest time on each feedback

round while the underlined indicate the smaller time in each grouped pair.

Round RF QS-RF QS IR-RF IR MR-RF MR

(a) COREL image database

0 27.2 345.5 24.7 345.5 24.7 955.5 612.9

1 23.8 461.9 71.3 421.6 32.6 1117.4 1172.4

2 24.0 540.1 146.3 422.4 33.4 1117.5 1172.3

3 24.2 660.7 261.9 423.1 34.2 1117.5 1172.3

4 24.4 823.1 417.9 423.8 34.9 1117.5 1172.2

5 24.5 1030.2 615.8 424.5 35.5 1117.4 1172.1

(b) GTZAN music database

0 3.6 34.2 10.8 34.2 10.8 96.6 168.1

1 3.1 45.6 16.6 42.2 14.1 114.8 279.0

2 3.3 51.0 20.9 42.3 14.2 114.9 279.5

3 3.4 59.7 27.4 42.4 14.3 114.9 279.3

4 3.6 71.2 36.7 42.5 14.3 114.8 278.6

5 3.7 86.4 47.8 42.5 14.4 114.8 280.5
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Table 5
Average MAP values (�10�2) of ReFeat (RF), Qsim-RF (QS-RF), Qsim (QS),

InstRank-RF (IR-RF), InstRank (IR), MRBIR-RF (MR-RF) and MRBIR (MR). The

figures boldfaced are the best performance on each feedback round while the

underlined indicate the better performance in each grouped pair.

Round RF QS-RF QS IR-RF IR MR-RF MR

(a) COREL image database

0 9.11 8.87 4.76 8.87 4.76 10.88 7.03

1 15.17 14.83 7.07 10.56 6.24 14.52 9.60

2 18.20 17.51 8.08 11.81 6.76 16.01 10.63

3 19.92 19.17 8.72 12.85 7.06 17.05 11.32

4 20.93 20.17 9.22 13.49 7.37 17.68 11.84

5 21.71 20.98 9.57 14.07 7.58 18.11 12.18

(b) GTZAN music database

0 31.07 28.73 28.94 28.73 28.94 29.54 29.27

1 39.87 35.14 34.89 32.70 36.50 34.15 33.36

2 43.64 37.06 35.80 36.06 39.97 37.01 36.17

3 45.56 38.17 36.02 38.64 42.26 39.06 38.19

4 46.56 38.78 36.14 40.52 44.11 40.58 39.76

5 47.09 39.12 36.10 41.92 45.49 41.76 40.97
original space. It is interesting to note that MRBIR-RF spends less
time than MRBIR in most cases. This indicates that it is easier
to find the underlying manifold in our relevance feature space, as
compared to that in the original space.

Despite these improvements, ReFeat is still significantly
better than the other three methods applied in the relevance
feature space (except that MRBIR-RF achieves the best perfor-
mance for retrieval with one query on the image database). The
processing time reported in Table 6 also shows that ReFeat has
the best efficiency among these methods. These results validate
the efficacy and efficiency of our proposed ranking scheme. We
will provide a more detailed analysis on our ranking scheme in
the next subsection.

5.2.2. The ranking scheme

This subsection analyzes our ranking scheme. ReFeat incor-
porates the query information into the feature weights. Here, we
employ the same weights in the existing methods to improve
their performance. Based on InstRank-RF, we design a new
method called InstRank-WRF which uses weighted Euclidean
distance instead of Euclidean distance in InstRank-RF. The
weights for the relevance features are calculated in exactly the
same way as that in ReFeat. InstRank-WRF is compared with
ReFeat and InstRank-RF in Fig. 5 and Table 7. It is shown that
InstRank-WRF outperforms InstRank-RF in most cases except
for retrieval with one query on the image database. These
observations show that the feature weights are not only useful
in our ranking scheme, but also in existing distance-based ranking
schemes. We also provide the retrieval performance of InstRank
in Fig. 5. Recall that InstRank performs better than InstRank-RF
on the music database. However, with the feature weights,
InstRank-WRF is now better than InstRank.

Overall, Fig. 5 and Table 7 reveal that ReFeat is superior
to InstRank-WRF in terms of both retrieval performance and
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Table 7
Average on-line processing time (in millisecond) of ReFeat (RF), InstRank-WRF

(IR-WRF) and InstRank-RF (IR-RF).

Round COREL image database GTZAN music database

RF IR-WRF IR-RF RF IR-WRF IR-RF

0 27.2 731.6 345.5 3.6 98.5 34.2

1 23.8 1773.0 421.6 3.1 232.4 42.2

2 24.0 1881.2 422.4 3.3 237.9 42.3

3 24.2 1899.9 423.1 3.4 241.1 42.4

4 24.4 1920.9 423.8 3.6 244.1 42.5

5 24.5 1940.8 424.5 3.7 247.5 42.5
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processing time. This indicates that there is no need to calculate
the costly distance in the relevance feature space; instead, a good
ranking can be efficiently produced by simply averaging the
weighted relevance feature values.
Table 8
Average on-line processing time (in millisecond) of the methods tested on the

image and music databases with different dimensions. The method names are

abbreviated as ReFeat (RF), Euclidean (EU), MRBIR (MR), Qsim (QS), InstRank

(IR) and BALAS (BA).

Database One query Round 5

RF EU MR RF QS IR MR BA

(a) COREL image database

COREL[11] 27.2 4.3 591.6 24.5 590.9 10.6 1172.1 347.1

COREL[35] 27.2 13.7 599.6 24.5 602.8 22.5 1172.1 415.7

COREL[67] 27.2 24.7 612.9 24.5 615.8 35.5 1172.1 506.0

COREL[200] 27.2 69.5 645.2 24.5 670.0 89.7 1172.1 874.2

(b) GTZAN music database

GTZAN[20] 3.7 0.4 144.7 3.7 35.0 1.6 280.5 24.8

GTZAN[100] 3.7 3.6 147.1 3.7 37.9 4.5 280.5 50.0

GTZAN[230] 3.6 10.8 168.1 3.7 47.8 14.4 280.5 180.3

GTZAN[400] 3.7 13.8 159.0 3.7 50.6 17.2 280.5 148.5
5.2.3. Increasing dimensionality

Recall that every image in the COREL image database is repre-
sented by a 67-dimensional feature vector containing shape, texture
and color features. Here we denote the database as COREL[67], and
construct three other databases: (i) COREL[11] employs 11 shape
features only; (ii) COREL[35] uses 35 features, consisting of 11 shape
and 24 texture features; and (iii) COREL[200] is a 200-dimensional
database, created by adding 133 random features to COREL[67] (each
random feature is generated from a uniform distribution). Similarly,
we denote the original GTZAN music database as GTZAN[230], and
construct three other databases: (i) GTZAN[20] uses the first 20
features of GTZAN[230]; (ii) GTZAN[100] employs the first 100 feature
of GTZAN[230]; and (iii) GTZAN[400] is created by adding 170 random
features to GTZAN[230]. All the methods are evaluated on the eight
databases, and the retrieval results with one query and in feedback
round 5 are shown in Fig. 6 and Table 8.

Fig. 6 shows that ReFeat outperforms the other methods
regardless of how many features are used to describe the
database. The only exception is GTZAN[20], on which Euclidean

is slightly better than ReFeat for retrieval with one query. These
results validate the efficacy of ReFeat when dealing with
different dimensional databases.

Note that on the databases COREL[200] and GTZAN[400] with
randomly generated features, ReFeat outperforms the other
methods with the lowest performance degradation, when compared
with that on the original databases COREL[67] and GTZAN[230],
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respectively. For example, at feedback round 5 of image retrieval,
the MAP value of ReFeat degrades by 50.4%, which is much better
than 93.7% for Qsim, 93.7% for InstRank, 94.7% for MRBIR and
92.4% for BALAS; at feedback round 5 of music retrieval, ReFeat
only degrades by 11.3%, as compared to 56.7% for Qsim, 66.1% for
InstRank, 84.5% for MRBIR and 51.3% for BALAS. These results
show that ReFeat has a good tolerance to randomly generated or
irrelevant features.

Moreover, it is interesting to note that for our music retrieval
problem, every method (except MRBIR) achieves the best MAP on
GTZAN[100] out of the four databases including the original one,
GTZAN[230]. This observation indicates that the music retrieval
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performance might be further improved using some proper
feature selection scheme.

The processing time reported in Table 8 shows that Euclidean
and InstRank spend the shortest time in low-dimensional cases,
but their processing time increases linearly with respect to the
database dimension. Qsim, MRBIR and BALAS spend much more
time than ReFeat. ReFeat achieves constant time with respect to
the database dimension, either dealing with one query or handling
feedbacks. This enables our framework to scale up to high-
dimensional databases without increasing the processing time.

5.2.4. Using different numbers of relevance features

We study the effect of the number of relevance features, i.e., t,
in this subsection. Fig. 7 shows the MAP values of ReFeat as t

varies from 10, 50, 100, 500, 1000, 2000, 3000, 4000, 5000, 6000,
7000, 8000, 9000, to 10 000. Here we set c¼ 8 and g¼ 0:25 by
default.

Fig. 7 shows that the retrieval performance of ReFeat rapidly
increases with the increase of t when t is relatively small. Even
with a sufficiently large t, the performance still appears to rise
without overfitting. These observations show the possibility of
improving the performance of ReFeat by adding more relevance
features. However, when setting t, the trade-off between perfor-
mance and processing time should be considered.

5.2.5. Using different sub-sample sizes

From the analysis provided in Section 4.3, we know that
iForests built with different sub-sample sizes generate different
sets of topologically distinct iTrees, thus producing different sets
of distinct path lengths. We suspect that the ‘‘diversity’’ of the
path lengths has a critical impact on the performance of ReFeat,
because a system with diverse path lengths tends to provide a full
range of relevancy to improve ranking results. Therefore, to gain
an insight into the setting of sub-sample size c, we use Shannon
index [27] to measure the diversities of iForests built with
different c values. Shannon index is a statistic for measuring
the biodiversity of an ecosystem. The index increases when the
ecosystem has additional unique species or a greater species
evenness. A bigger Shannon index indicates a larger diversity. In
this subsection, each instance (e.g., an image or a song) is treated
as an ecosystem. The instance may have different relevance
feature values on different iTrees, and each possible feature
value is considered as a species in the ecosystem. We count
the numbers of the species and measure the instance diversity by
Shannon index. The final diversity of the iTrees is estimated by
averaging the Shannon indices over all instances. Formally, the
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diversity DðcÞ of the iTrees built with sub-sample size c is
calculated by:

DðcÞ ¼ �
1

9D9
X9D9
i ¼ 1

X9Lc9
j ¼ 1

njðxiÞ

t
ln

njðxiÞ

t

� �
�
9Lc9�1

2t
, ð8Þ

where Lc ¼ f‘1,‘2, . . . ,‘kg is the set of all possible relevance feature
values measured by the iTrees, xiAD is an instance in the
database, njðxiÞ returns the number of iTrees in which xi has
feature value ‘j, t is the total number of iTrees, and ð9Lc9�1Þ=2t is
a correction factor.

We set c¼ 22,23, . . . ,212 for the image database, and
c¼ 22,23, . . . ,29 for the music database. The resultant Shannon
indices are plotted in Fig. 8, which shows that the diversity
increases as c increases from 4 and reaches the peak at c¼ 64
on both the image and music databases. It is also interesting
to note that the diversity decreases as c goes beyond 64,
even though the number of possible feature values (i.e., possible
species) increases. The MAP values of ReFeat are also shown in
Fig. 8. Since the best performance of ReFeat is obtained with
c¼ 8 for the image database and c¼ 4 for the music database,
and there is no benefit to use a large c (i.e., c464), we suspect
that the optimal setting for any task is somewhere between the
smallest c (¼4) and the diversity peak. This can be used as an
empirical guideline for setting the sub-sample size.

5.2.6. Using different g values

We also study how the trade-off parameter g affects the
performance of ReFeat in relevance feedback. We test it by
varying g from 0 to 1 with step 0.1, and the resultant MAP values
are shown in Fig. 9. It shows that ReFeat achieves relative good
performance when gA ½0:1,0:4� on both the image and music
databases. These observations verify our statement in Section 4.4
that positive instances should contribute more than negative ones.
6. Discussion

This section discusses three related issues. We first provide
some necessary characteristics of a ranking model to be applied in
the ReFeat framework. Then, we detail the difference between
our ranking scheme and that measured by distance and similarity.
Finally, our ranking score calculation is compared with the one
used in iForest for anomaly detection.

For a successful application in the proposed framework, the
necessary characteristics of alternative ranking models are (i) each
individual model provides a ranking of instances through some
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profile underlying the database and (ii) each model is generated
efficiently so that the multiple models, representing multiple
profiles of the database, can be generated very quickly to form
the relevance feature space. We show that iTrees work well in our
framework. Whether there are other ranking models which satisfy
the characteristics is an open question.

Next we analyze the difference between our ranking scheme
and that measured by distance and similarity. Let dða,bÞ and sða,bÞ
denote the distance value and similarity value, respectively,
between two instances a and b. Then a distance metric and its
inversely related similarity measure are required to obey the
following four axioms for all instances a, b and c [28]: (i) equal
self-similarity: dða,aÞ ¼ dðb,bÞ and sða,aÞ ¼ sðb,bÞ; (ii) minimality:
dða,bÞ4dða,aÞ and sða,bÞosða,aÞ; (iii) symmetry: dða,bÞ ¼ dðb,aÞ
and sða,bÞ ¼ sðb,aÞ; (iv) triangle inequality: dða,bÞþdðb,cÞ4dða,cÞ,
and if a and b are similar and b and c are similar, then a and c
must also be similar.

The score calculated by Eq. (3) does not satisfy any of the above
axioms. For example, symmetry does not hold in our calculation
since Scoreða9bÞ�Scoreðb9aÞ ¼

Pt
i ¼ 1ð‘iðbÞ�‘iðaÞÞ, which is not 0 in

most cases. The violation of the axioms provides our ranking
scheme more flexibility when ranking instances with respect to a
query. In fact, questions have been raised about the practical
validity of each of these axioms [28]. To the best of our knowledge,
there is no other CBMIR ranking scheme that violates all the
axioms.

In the anomaly detection setting [23], instances are anomalies
if they are irrelevant to the various profiles modeled by different
iTrees, i.e., if they have short average path lengths in an iForest
model. Thus, the anomaly scoring formulation given in [23] can
be rewritten as ScoreADðxÞ ¼ 1
t

Pt
i ¼ 1 ‘iðxÞ, where high scores indi-

cate normal points, and low scores indicate anomalies. The above
anomaly scoring formulation is only different from Eq. (3) by one
term, which is the feature weight wiðqÞ. We show that, under
CBMIR, this term effectively modifies the ranking scheme from
providing an ordering from normal points to anomalies under
anomaly detection, to providing an ordering from instances most
relevant to those most irrelevant with respect to the query q.
7. Conclusions

This paper proposes a novel ranking framework for CBMIR
with relevance feature mapping derived from an ensemble of
ranking models. We employ an ensemble of iTrees to map
instances from the original feature space to the proposed new
relevance feature space. We show that the new relevance feature
space has richer information than the original one for ranking
database instances with respect to a given query as well as
subsequent feedbacks. We also show that the relevance feature
space accounts for the significant performance improvement of
several existing methods when compared to the same methods
applied in the original feature space. Moreover, our experiments
validate the utility of our relevance feature weighting, on which
the proposed new ranking scheme is based. The new scheme
performs better than the four existing methods when they are
evaluated in the same footing, in terms of both retrieval perfor-
mance and time complexity.

The proposed framework has the following unique character-
istics: (i) it utilizes no distance measure and has linear time and
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space complexities with respect to the database size when
building its model and mapping the database off-line; (ii) it has
constant on-line retrieval time, irrespective of the number of
relevance feedback rounds; (iii) it can deal with high-dimensional
databases with constant time complexity, once the number of
relevance features is fixed; and (iv) it has a good tolerance to
irrelevant features.
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Appendix A. Isolation forest

This section briefly introduces the methodology of iForest [23],
which employs a two-stage process to detect anomalies. We
provide some insights on how each iTree measures the relevance
of instances with respect to a profile underlying the data. It helps
to understand the relevance feature space.

In the first stage, iForest builds a collection of iTrees using
fixed-sized random sub-samples of a data set. Each iTree is
constructed by recursively random-partitioning the sub-sample
along axis-parallel coordinates until every instance is isolated
from the rest of instances or a specified height limit is reached.
The algorithmic details are given by Algorithms 1 and 2. Note that
an iTree models a profile of the given random sub-sample, and
different iTrees describe different profiles due to the randomness
incurred in both the sub-sampling process and the tree building
process.

Algorithm 1. iForestðD,t,cÞ.

input : D - input data, t - number of iTrees, c - sub-sample
size
output: a set of t iTrees

1 set height limit h¼ dlog2ðcÞe;
2 for i¼1 to t do
3 D’sampleðD,cÞ; // randomly sample c instances fromD
4 Ti’iTreeðD,0,hÞ;
5 end

Algorithm 2. iTreeðD,e,hÞ.

input : D - input data, e - current tree height, h - height limit
output: an iTree

1 if eZh or 9D9r1 then

2 return exNodefSize’9D9g; // an external node

3 else
4 randomly select an attribute a from the data D;
5 randomly select a split point p from max and min values of

attribute a in D;

6 Dl’filterðD,aopÞ; // instances in D which have values

less than p on attribute a

7 Dr’filterðD,aZpÞ; // instances in D which have

values greater than or equal to p on attribute a
8 return inNodefSplitAtt’a, SplitValue’p,

Left’iTreeðDl,eþ1,hÞ, Right’iTreeðDr ,eþ1,hÞg;
// an internal node

9 end

In the second stage, iForest calculates an anomaly score for
each test instance based on its average path length over all iTrees.
A path length is estimated by counting the number of edges from
the root node to the external node as an instance travels through
the iTree. If the instance falls into an external node with Size41,
the returned path length is adjusted by adding cðSizeÞ, which is
defined in Eq. (2) and accounts for the average path length of an
unbuilt subtree beyond the height limit. This process is given by
Algorithm 3.

Algorithm 3. PathLengthðx,T,eÞ.

input : x - an instance, T - an iTree, e - current path length
(to be initialized to 0 when first called)
output: the path length of x

1 if T is an external node then
2 return eþcðT :SizeÞ; // cð � Þ is defined in Eq. (2)

3 end
4 a’T :SplitAtt, p’T :SplitValue;
5 if xaop then
6 return PathLengthðx,T :Left,eþ1Þ;
7 else
8 return PathLengthðx,T :Right,eþ1Þ;
9 end

Here, a short path length means that we can easily isolate the
instance from the majority of instances by a few random partitions.
Thus, instances having short path lengths always differ from the
majorities on some characteristics. Note that an iTree describes a
data profile from a given sub-sample. Therefore, instances having
short path length have different data characteristics to the majo-
rities which have long path lengths. Thus, the path length stipu-
lated by an iTree actually measures the relevance of an instance
with respect to the profile modeled by this iTree: a short (long)
path length indicates that the instance is irrelevant (relevant) to
the profile. For anomaly detection, instances identified to be
irrelevant to the various profiles modeled by a number of iTrees
are deemed to be anomalies, and instances relevant to the various
profiles are normal points.
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