
Relevance Feature Mapping
for Content-Based Image Retrieval

Guang-Tong Zhou1, Kai Ming Ting2, Fei Tony Liu2, Yilong Yin1

1School of Computer Science and Technology, Shandong University, Jinan 250101, China
2Gippsland School of Information Technology, Monash University, Victoria 3842, Australia

zhouguangtong@gmail.com, {kaiming.ting,tony.liu}@infotech.monash.edu.au,
ylyin@sdu.edu.cn

ABSTRACT
This paper presents a ranking framework for content-based
image retrieval using relevance feature mapping. Each rel-
evance feature measures the relevance of an image to some
profile underlying the image database. The framework is
a two-stage process. In the off-line modeling stage, it con-
structs a collection of models which maps all images in the
database to the relevance feature space. In the on-line re-
trieval stage, it assigns a weight to every relevance feature
based on the query image, and then ranks images in the
database according to their weighted average feature val-
ues. The framework also incorporates relevance feedback
which modifies the ranking based on the feedbacks through
reweighted features. We show that the power of the pro-
posed framework is coming from the relevance features. Ex-
periments on a large image database validate the efficacy
and efficiency of the proposed framework.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval — Retrieval models

General Terms
Algorithms

1. INTRODUCTION
With the rapid increase of digital image collections, effec-

tive and efficient retrieval techniques become more and more
important. Many existing image retrieval systems index
and search the images based on textual information such as
keywords, surrounding text, etc.. However, the text-based
search suffers from the following inherent drawbacks [17, 4]:
(i) the textual information is usually nonexistent or incom-
plete with the emergence of massive image databases; (ii) the
textual description is not sufficient for depicting subjective
semantics since different people may describe the content of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MDMKDD’10, July 25th, 2010, Washington, DC, USA.
Copyright 2010 ACM 978-1-4503-0220-3 ...$10.00.

an image in different ways; and (iii) some image contents
are difficult to be described in words.

To address these problems, content-based image retrieval
(CBIR) is proposed and has attracted a lot of research in-
terest in recent years [15, 4]. In a typical CBIR setting, a
user poses a query image to the system in order to retrieve
relevant images from the database. However, due to the se-
mantic gap [15] between high-level concepts and low-level
features, the list returned by the initial search may not be
good enough to satisfy the user’s requirement. Thus, rele-
vance feedback [14, 18] is usually employed to allow the user
to iteratively refine the query information by labeling a few
positive images as well as negative images in each feedback
round.

The performance of a CBIR system mainly relies on the
accuracy of its ranking results. Thus, ranking is the central
problem in CBIR; and many have endeavored to design a fast
and effective ranking method. A key ingredient in ranking is
the measure used for comparing images in the database with
respect to the query. Many existing methods use distance
as the core ranking measure.

This paper presents a novel ranking framework for CBIR
by using an ensemble of ranking models. The framework
utilizes no distance or similarity measure, which is funda-
mentally different from most existing methods. Our frame-
work makes use of ranking models to form a relevance fea-
ture space. It builds a collection of ranking models and the
output of each model forms a relevance feature. Then, the
models are used to map every database image into a point
in a new space of relevance features. Finally, the ranking
and retrieval of images, based on one query and relevance
feedbacks, are computed in the new space. Our analysis
shows that the power of the proposed framework comes from
the relevance features. Our framework has linear time and
space complexities w.r.t. the database size, and the on-line
processing time is constant no matter how many original
features are used to represent an image. These character-
istics enable the proposed framework to scale up to high-
dimensional CBIR tasks. Besides, our framework has a good
tolerance for random features.

The rest of this paper is organized as follows. Section 2
reviews related work. Section 3 introduces the proposed
framework, followed by a detailed description in Section 4.
Then, Section 5 reports the empirical studies, and Section 6
provides a discussion on related issues. Finally, this paper
concludes in Section 7.

2. RELATED WORK
Many ranking methods employ distance as the core rank-

ing measure. In the case of retrieval with one query without
relevance feedback, the majority of previous works have fo-
cused on defining or refining the distance. The simplest
way is to use a single distance metric, e.g., Euclidean dis-
tance or Manhattan distance. Here images that lie near to
a given query are ranked higher than images far away from
the query. However, the above-mentioned distance metrics
are global measures and they might not produce the best re-
sults for all queries, even though they are widely used. Thus,
researchers have tried to find distance metrics that can be
tailored to each query. For example, based on the manifold
ranking algorithm, He et al. [7] proposed the MRBIR method
which implicitly learns a manifold metric to produce ranking
for each query.

In relevance feedback, the additional information provided
by the user offers more flexibility in the design of effective
ranking methods. Here the query and positive feedbacks
are usually considered as positive images, and negative feed-
backs are negative images. The refinement can be done in
three ways. First, the distance metric for the initial query
session can be further refined based on pair-wised distance
constraints derived from positive and negative images. Com-
monly used techniques include distance metric learning [5],
kernel learning [16], and manifold learning [8].

Second, apart from refining the distance metric, we can
also tackle the problem by designing appropriate ranking
schemes. For example, MARS (Multimedia Analysis and
Retrieval System) [13] employs a query-point movement tech-
nique which estimates the “ideal query point” by moving it
towards positive images and away from negative ones. Then
the ranking is produced by measuring distance with respect
to the ideal query. Giacinto and Roli [6] proposed the In-

stRank method based on the idea that an image is more
likely to be relevant if its distance to the nearest positive
image is small, while an image is more likely to be irrele-
vant if its distance from the nearest negative image is small.
A recent method called Qsim [20] advocates ranking images
based on the query-sensitive similarity measure, which takes
into account the queried concept when measuring similari-
ties. Note that this kind of methods is based on a predefined
or learned distance metric.

Third, some methods transform the CBIR problem into
a classification problem, and solve it using a classification
technique such as support vector machine [11], and Bayesian
method [17]. A representative method called BALAS [17] first
estimates the probability density function of positive class as
well as negative ones, and then produces the ranking using a
Bayesian learning framework. However, most classification
methods are designed to classify images into a fixed number
of classes and are not designed for ranking images. Thus,
the ranking results might be suboptimal.

This paper proposes to rank images through a framework
that does not require distance calculation — a computa-
tionally expensive process. This is fundamentally different
from most existing methods. The proposed framework is
able to deal with retrieval tasks with one query as well as in
relevance feedback. In contrast to this, most of the above-
mentioned methods were designed to be used in relevance
feedback only, e.g., InstRank, Qsim and BALAS.

It is also worth noting that [12] proposed a CBIR paradigm
called query-by-semantic-example which maps and in turn

retrieves images in a semantic space. Here a set of semantic-
level concepts has to be predefined in order to construct the
semantic features. On the contrary, the relevance features
used in this paper are automatically generated — users do
not need to specify them.

3. FRAMEWORK
Generally speaking, a CBIR system is composed of four

parts [1]: (i) a given image database D; (ii) a query Q; (iii) a
model F(Q,D) to model the relationships between images in
Q and D; and (iv) a ranking scheme R(D|Q) which defines
an ordering among the database images w.r.t. Q. On the
other hand, a ranking system consists of three components:
(i) a given data set D̂; (ii) a model F̂(D̂) to model the rela-

tionships between instances in D̂; and (iii) a ranking scheme

R̂(D̂) which produces an ordering for all the instances in D̂.
Here, we propose to map the image database D from the

original feature space Rd into a new space Rt to form a new
database D′ by using an ensemble of t ranking models, i.e.,
F̃ = [F̂1, F̂2, · · · , F̂t]. Given a query Q, we first map it into
the new space to obtain Q′, and then we employ a ranking
scheme R′(D′|Q′) to rank the images in D′. We show in

this paper that the ensemble of ranking models, i.e., F̃, can
be implemented using an anomaly detector called Isolation
Forest, or iForest [10].

iForest builds an ensemble of iTrees to detect anomalies.
An iTree is a random binary tree, constructed using a small
sub-sample of the given data set. In fact, each iTree de-
scribes some profile underlying the data, and it is also a
ranking model which produces an output in terms of path
length for a test instance: a long (short) path length indi-
cates that the instance is relevant (irrelevant) to the profile.
Instances identified to be irrelevant to the various profiles
modeled by a number of iTrees are deemed to be anoma-
lies. Detailed algorithms of iTree and iForest are provided
in Appendix.

In our framework, we build an iForest which is composed
of t iTrees to map images from the original feature space
to the relevance feature space, i.e., Rd → Rt. Here differ-
ent iTrees profile different aspects of the database. We treat
each iTree as a feature descriptor, and the feature value (i.e.,
path length) is a measure of relevance w.r.t. the profile mod-
eled by the iTree. For an image, the representation in the
new space is a vector of relevance features; hence the name
relevance feature mapping. We call the framework, in-
corporating the relevance feature mapping, ReFeat. Details
of ReFeat are presented in the next section.

4. METHODOLOGY

4.1 Off-line Modeling
ReFeat has two stages. In the off-line modeling stage, we

build an iForest for the given database D. Here t iTrees
are constructed, each built on a sub-sample of randomly
selected ψ images from D. For an image x ∈ D, we es-
timate its relevance feature value `i(x) on each iTree Ti

(i ∈ {1, 2, . . . , t}) and map x to the relevance feature space
as: x′ = [`1(x), `2(x), · · · , `t(x)]T . All the images in D are
mapped through the relevance feature mapping to form a
new database D′. Note that this stage does not require any
user intervention. Thus, D′ is generated off-line to accelerate
the following on-line retrieval process.

4.2 On-line Retrieval with One Query
Given a query image q, ReFeat represents it as a vec-

tor of t relevance features: q′ = [`1(q), `2(q), · · · , `t(q)]T ,
where `1(q), · · · , `t(q) are obtained on-line. To retrieve the
relevant images, we first assign a weight to each feature ac-
cording to q: a high weight is assigned to a feature which
signifies that q is relevant to the profile modeled by the fea-
ture; otherwise, a low weight is assigned. Then the ranking
score for every image in the database is computed using a
weighted average of its relevance feature values. The images
having the highest scores are regarded to be the most rele-
vant to the query. To implement this, we define a weight for
the ith feature as:

wi(q) =
`i(q)

c(ψ)
− 1, (1)

where c(ψ) is a normalization term which is the average
path length of a ψ-sized iTree, and it is defined as c(ψ) =
2
(
ln(ψ−1)−(ψ−1)/ψ+E

)
[10] (E ≈ 0.5772 is Euler’s con-

stant). Note that the minimum and maximum path lengths
estimated by a ψ-sized iTree are 1 and ψ − 1, respectively;
and thus the weight produced by Equation (1) has the range:
[1
c(ψ)

− 1, ψ−1
c(ψ)

− 1] (for example, wi(q) ∈ [−0.6966, 1.1236]

with ψ = 8).
Finally, the ranking score of an image x w.r.t. the query

q is given by the average weighted feature value:

Score(x|q) =
1

t

t∑
i=1

(
wi(q)× `i(x)

)
. (2)

Score(x|q) can be negative. If necessary, positive scores
can be produced by using an exponential mapping. For the
rest of this paper, we refer to the ranking based on average
weighted feature values as our ranking scheme.

It is worth noting that the off-line modeling of iForest uti-
lizes no distance or similarity measure [10], and the proposed
on-line ranking scheme also avoids distance or similarity cal-
culation through Equations (1) and (2). This characteristic
differentiates ReFeat from most existing methods which are
based on certain distance or similarity measures.

An illustrative example of ReFeat is shown in Figure 1.
The synthetic data set is composed of four classes, each con-
tains 50 instances. Here Concept 1 to Concept 4 are used to
represent four different semantic concepts in a CBIR task.
The instances are randomly drawn from Gaussian distribu-
tions with unit standard deviation and means located at
(2, 2), (−2, 2), (−2,−2) and (2,−2), respectively. The data
is presented in Figure 1(a). We map the data into a rel-
evance feature space using 1000 iTrees, each built on a 8-
sized sub-sample. The contours of equally-weighted aver-
age feature values are shown in Figure 1(b). Then, given a
query which is represented by the black diamond (¨) in Fig-
ure 1(c), ReFeat produces ranking score for every instance
in the data set according to Equation (2), and the resultant
contours of the ranking scores are plotted in Figure 1(c).
The query belongs to Concept 2, and most instances in Con-
cept 2 are highly ranked by ReFeat, compared to instances
from the other three concepts. This shows that the score
calculated by the average weighted feature value is a proper
relevance measure for ranking instances with respect to a
given query.

4.3 On-line Retrieval in Relevance Feedback
If relevance feedbacks are available from the user, we use

them to refine the retrieval result by modifying the feature
weights. Here the query is denoted by Q = P ∪N , where P
is the set of images from positive feedbacks and the initial
query, and N is the set of images from negative feedbacks.
After the initial query, they are initialized as follows: P =
{q} and N = ∅. Then, P and N are enriched with the
images labeled by the user in the relevance feedback process.
Here, we calculate the weight for the ith feature based on a
positive feedback z+ ∈ P in the same way as that for the
initial query, and produce the weights based on a negative
feedback z− ∈ N through negation. Formally, we have:

w+
i (z+) =

`i(z
+)

c(ψ)
− 1, and w−i (z−) = 1− `i(z

−)

c(ψ)
.

Then the resultant weight for feature i due to P (or N)
is generated using an averaging scheme which is defined as
follows (here | · | denotes the size of a set):

w+
i (P) =

1

|P|
|P|∑

k=1

w+
i (z+

k), and w−i (N) =
1

|N |
|N|∑
s=1

w−i (z−s).

Now the final weight for the ith feature can be obtained by
aggregating w+

i (P) and w−i (N). The aggregation can be
realized in different ways. Here we use a simple summing
method: wi(Q) = w+

i (P) + γw−i (N), where γ ∈ (0, 1] is
a trade-off parameter accounting for the relative weights of
the contributions between positive and negative images. It
is reasonable that positive images make more contribution
to the final ranking than negative ones. Since the farther
an image lies from positive images, the less likely that it
is a relevant one. However, we can not draw an opposite
conclusion for negative images: if an image lies far from
negative images, the possibility that it is a relevant one is
not necessary enhanced, since it may not be close to positive
images either. Similar strategies were employed in previous
works (e.g., [7, 20]).

Finally, ReFeat estimates the ranking score for every im-
age in the database using Equation (2) (by replacing wi(q)
with wi(Q)), and returns the images by ranking them in a
descending order according to their scores. Continue with
our synthetic example where the retrieval result after the
initial query is shown in Figure 1(c); with 3 positive feed-
backs and 3 negative feedbacks, ReFeat refines the retrieval
result by producing improved ranking scores, as shown in
Figure 1(d).

4.4 Time and Space Complexities
We now analyze the time complexity of ReFeat. In the

off-line modeling stage, building the iForest model takes
O

(
tψ log ψ

)
and the mapping fromD toD′ costs O

(|D|t log ψ
)

[10]. Thus, a total time complexity of O
(
(|D|+ ψ)t log ψ

)
is

required. In the on-line retrieval stage, the relevance feature
mapping for the query costs O

(
t log ψ

)
, calculating weights

takes O
(|Q|t), and producing relevance scores for all images

in the database costs O
(|D|t). Thus, for a query session,

ReFeat has a time complexity of O
(
(|D|+ |Q|+ log ψ)t

)
. It

is worth noting that |Q| is much smaller than |D|, and both
t and ψ are fixed at the beginning of the off-line modeling
stage which are never changed in on-line retrieval. Thus,
ReFeat has a linear time complexity with respect to |D| in

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

x

y

Concept1 Concept2 Concept3 Concept4

(a) Data distribution

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

x

y

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

(b) Average feature values

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

x

y

Query

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

(c) Retrieval with one query

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

x

y

Query Positive Feedbacks Negative Feedbacks

−0.2

−0.15

−0.1

−0.05

0

0.05

(d) Retrieval in relevance feedback

Figure 1: An illustrative example of ReFeat. Detailed descriptions are provided in Sections 4.2 and 4.3.

both off-line modeling and on-line retrieval stages1, which
makes it possible to scale up to large image databases. Ta-
ble 1 lists the time complexities of ReFeat as well as three
other methods. It shows that ReFeat has a relatively low
time complexity in on-line retrieval although it needs an ad-
ditional modeling stage. Note that we also compare BALAS

and MRBIR in our experiments. Although it is difficult to an-
alyze their complexities, the experimental results show that
BALAS and MRBIR usually spend more time than ReFeat.

The space requirement of our off-line model is also linear
with respect to |D|, since the database D′ costs O

(|D|t) and

iForest requires O
(
(2ψ−1)tb

)
memory space only [10], where

b is the memory size of a node in iTrees.

5. EXPERIMENTS
The performance of ReFeat is evaluated on the following

two aspects: (i) retrieval with one query, and (ii) retrieval
in relevance feedback. Our experiments are conducted using
the COREL image database [19] which contains 100 cate-
gories and each category has 100 images. Each image is
represented by a 67-dimensional feature vector, which con-
sists of 11 shape, 24 texture and 32 color features. To test
the performance, we randomly select 5 images from each cat-
egory to serve as the initial queries. For a query, the images
within the same category are regarded as relevant and the
rest are irrelevant. For each query, we continue to perform 5

1Here we omit the linear time complexity for finding the
highest ranking scores as it is inevitable for most methods.

rounds of relevance feedback. In each round, 2 positive and
2 negative feedbacks are provided. This relevance feedback
process is also repeated 5 times with 5 different series of
feedbacks. Finally, the average results with one query and
in different feedback rounds are recorded. Note that there is
no feature selection although it may be beneficial. The same
features are used by all the compared methods because we
are only interested in the relative instead of absolute per-
formances of the methods. The experiments are conducted
on a Pentium 4 machine with a 1.86 GHz CPU and 2 GB
memory.

We employ a commonly used measure, i.e., PR-curve, to
evaluate the retrieval performances with one query. How-
ever, in relevance feedback, a single PR-curve is not enough
to reveal the performance changes with the increasing num-
ber of feedbacks. Thus, we use BEP-graph [20, 19] and ef-
fectiveness [3]. A BEP-graph is obtained by connecting the
Break-Event-Points (BEPs) after different feedback rounds,
where a BEP denotes the point in which both precision and
recall have the same value. The higher the BEP value, the
better the performance. Effectiveness ηS is a quantitative
measure defined as:

ηS =

{
|R⋂ TS |/|R| if |R| ≤ S

|R⋂ TS |/|TS | if |R| > S
,

where S denotes the number of relevant images the user
wants to retrieve, R represents the set of relevant images in
the database w.r.t. the query, and TS is the set of the top

Table 1: Time complexities of ReFeat, Euclidean, InstRank [6] and Qsim [20]. Here d is the dimension of the
database D and “−” means not required. InstRank and Qsim are methods dealing with relevance feedback only.

Off-line On-line retrieval
modeling with one query in relevance feedback

ReFeat O((|D|+ ψ)× t× log ψ) O((|D|+ log ψ)× t) O((|D|+ |Q|)× t)
Euclidean − O(|D| × d) O(|D| × |Q| × d)
InstRank − N/A O(|D| × |Q| × d)
Qsim − N/A O(|D| × |Q| × (d + |P|))

S ranked images returned by the system. The bigger the
value of ηS , the better the performance. As in [20], we set
S = 200.

The efficacy and efficiency of ReFeat are validated in the
next subsection, followed by empirical studies showing the
effectiveness of the relevance feature mapping, the influence
of increasing database dimension, and the effect of different
parameter settings in ReFeat.

5.1 Comparison with Existing Methods
As a new ranking framework for CBIR, ReFeat is first

compared with Euclidean method and MRBIR [7] when no
relevance feedback is performed. In relevance feedback, Qsim
[20], InstRank [6], MRBIR [7] and BALAS [17] are employed
for benchmarking. Note that Qsim, InstRank and BALAS are
designed to be used in relevance feedback only, and we use
the Euclidean method as their base method before relevance
feedback kicks in. The three parameters in ReFeat have
the following default settings: number of relevance features
t = 1000, sub-sample size ψ = 8 and trade-off parameter
γ = 0.25. The default parameter settings are used for all
the other compared methods.

The PR-curves of ReFeat, Euclidean and MRBIR for re-
trieval with one query are presented in Figure 2, which show
that ReFeat outperforms the other two methods. We also
conduct t-tests to gain further insight. For each of the 500
queries, we calculate the BEP and effectiveness values us-
ing every compared methods. The win/draw/loss counts
are shown in Table 2, where a win/loss is counted if ReFeat
performs better/worse on a query than the comparing ap-
proach, otherwise a draw is counted. Then a paired t-test
at 5% significance level is performed for the recorded BEP
(and effectiveness) series. The results are presented in Ta-
ble 2 which show that ReFeat significantly outperforms Eu-
clidean and MRBIR, in terms of both BEP and effectiveness.

Table 2: Win/draw/loss counts and t-test results
of ReFeat against Euclidean and MRBIR for retrieval
with one query. The number in bracket “[]” is the
probability of rejecting the hypothesis that ReFeat is
significant better than the compared method.

BEP Effectiveness
Euclidean 345/0/155 333/36/131

[5.7× 10−27] [2.0× 10−28]
MRBIR 328/0/172 331/34/135

[4.5× 10−9] [8.4× 10−15]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Recall
P

re
ci

si
o

n

ReFeat
Euclidean
MRBIR

Figure 2: PR-curves of the compared methods.

0 1 2 3 4 5
0.05

0.1

0.15

0.2

0.25

0.3

0.35

Round of relevance feedback

B
E

P

ReFeat
Qsim
InstRank
MRBIR
BALAS

Figure 3: PR-curves and BEP-graphs of the com-
pared methods.

As for retrieval in relevance feedback, the BEP-graphs are
shown in Figure 3, and the effectiveness values are tabulated
in Table 3 where the best performance at each round has
been boldfaced. Note that Round0 presents the retrieval
performances with one query only, where Euclidean is used
as the base method for Qsim, InstRank and BALAS. The re-
sults clearly show that ReFeat achieves the best BEP and
effectiveness no matter how many feedbacks are provided.
Since ReFeat has a superior performance with both one
query and relevance feedbacks, we can conclude that ReFeat
is effective for CBIR.

Apart from the retrieval performance, processing time is
also an important factor in CBIR. The average on-line pro-

Table 3: Average effectiveness η̄200 (%) values of
ReFeat (RF), Qsim (QS), InstRank (IR), MRBIR (MR)
and BALAS (BA).

RF QS IR MR BA
Round0 18.78 12.52 12.52 14.25 12.52
Round1 29.14 18.46 16.69 20.15 14.55
Round2 34.42 21.87 19.41 23.48 19.64
Round3 37.47 24.67 21.79 26.20 23.10
Round4 39.20 27.11 24.08 28.57 25.28
Round5 40.60 29.33 26.19 30.66 27.40

cessing time of all compared methods is presented in Table 4
where the shortest time cost at each round has been bold-
faced. The results show that ReFeat has the best efficiency
except that it spends a bit more time than Euclidean at
Round0. Notice that ReFeat achieves the shortest and near
constant processing time regardless of the feedback rounds.
The time is independent of the number of feedbacks because
the time complexity of ReFeat for retrieval in relevance feed-
back is dominated by O

(|D|×t
)

as |Q| ¿ |D|. InstRank also
has a near constant time cost because the distances calcu-
lated in previous feedback rounds are saved for the following
rounds. MRBIR has to iteratively update the ranking result
with expensive large matrix operations.

Although ReFeat has an off-line modeling stage, it costs
2.87 seconds only for our database containing 10000 images.
We believe that it pays to employ such an off-line modeling
stage because of the good performance and quick processing
time achieved by ReFeat in on-line retrieval.

Table 4: Average processing time (in ms) of ReFeat

(RF), Qsim (QS), InstRank (IR), MRBIR (MR) and
BALAS (BA).

RF QS IR MR BA
Round0 27.8 27.2 27.2 701.0 27.2
Round1 27.1 72.4 32.5 1353.5 257.3
Round2 27.4 150.6 33.4 1354.1 314.8
Round3 27.5 270.6 34.2 1353.8 374.9
Round4 27.7 431.8 34.8 1353.8 445.4
Round5 27.8 637.7 35.5 1353.9 516.4

5.2 Relevance Feature Mapping
Recall that ReFeat is a two-stage process, where the first

maps images in a database to a relevance feature space,
and the second ranks the images in this space. Experi-
ments in the last subsection have already shown that ReFeat
outperforms the other methods which use the original fea-
ture space. Here, we hypothesize that the performance of
existing ranking methods can be improved using our rele-
vance features. Thus, we perform Qsim and InstRank in
the relevance feature space (denoted by Qsim-ReFeat and
InstRank-ReFeat, respectively), and the results are shown
in Figure 4. Exactly the same relevance feature mapping is
employed for all methods that use it. MRBIR and BALAS are
omitted in this experiments due to their high computational
costs. Note that the same conclusion can always be made

0 1 2 3 4 5
0.05

0.1

0.15

0.2

0.25

0.3

0.35

Round of relevance feedback

B
E

P

ReFeat
Qsim−ReFeat
InstRank−ReFeat
Qsim
InstRank

Figure 4: BEP-graphs of ReFeat, Qsim-ReFeat,
InstRank-ReFeat, Qsim and InstRank.

0 1 2 3 4 5
0.05

0.1

0.15

0.2

0.25

0.3

0.35

Round of relevance feedback

B
E

P

ReFeat
Qsim−ReFeat
InstRank−ReFeat
Qsim
InstRank

Figure 5: BEP-graphs of ReFeat, Qsim-ReFeat,
InstRank-ReFeat, Qsim and InstRank. Here, the perfor-
mance is evaluated on the ranking of non-feedbacks.

for both BEP and effectiveness. Thus, we only provide the
BEP results hereafter.

As shown in Figure 4, with the help of the relevance
feature mapping, Qsim-ReFeat and InstRank-ReFeat sig-
nificantly outperform their original versions, i.e., Qsim and
InstRank. These observations clearly show that our rele-
vance feature space is more suitable for ranking than the
original space. Thus, we can conclude that the power of
ReFeat comes from the relevance feature mapping. In ad-
dition, ReFeat is comparable with Qsim-ReFeat except that
Qsim-ReFeat achieves the best performance at the last two
feedback rounds.

Note that our computation of retrieval performance has
included feedback images, following the same convention as
previously reported results (e.g., [6, 20]). However, this cal-
culation not only inflates the performance by including feed-
backs, but also has an unfair advantage over methods which
do not use distance measures — that may not return zero
distances for feedbacks. Thus, we have re-calculated the
retrieval performance by excluding the feedbacks, and the
results are presented in Figure 5 — the “true” retrieval per-
formances. It shows that our ranking scheme outperforms
the others at ranking non-feedbacks, and paired t-tests on

the BEP values also indicate significant improvement at each
feedback round (details are omitted due to space limitation).
These results show that ReFeat is good at retrieving new rel-
evant images rather than returning the previously labeled
feedbacks.

Moreover, the processing time reported in Table 5 shows
that ReFeat has the best efficiency among the three meth-
ods applied in the relevance feature space. This is because
ReFeat is designed to be used in this space by taking advan-
tages of the relevance features.

Table 5: Average processing time (in ms) of ReFeat

(RF), Qsim-ReFeat (QS-RF), InstRank-ReFeat (IR-
RF), Qsim (QS) and InstRank (IR).

RF QS-RF IR-RF QS IR
Round0 27.8 347.6 347.6 27.2 27.2
Round1 27.1 460.6 421.6 72.4 32.5
Round2 27.4 537.3 422.5 150.6 33.4
Round3 27.5 654.9 423.3 270.6 34.2
Round4 27.7 812.6 424.0 431.8 34.8
Round5 27.8 1013.8 424.6 637.7 35.5

5.3 Increasing Dimensions
Here we investigate the effect on the retrieval performance

and processing time as a result of an increase in database di-
mensions. Recall that every image in the COREL database
is represented by a 67-dimensional feature vector contain-
ing shape, texture and color features. Here we denote the
database as D[S,T,C], and construct three other databases:
(i) D[S] employs 11 shape features only; (ii) D[S,T] uses 35
features, consisting of 11 shape and 24 texture features; and
(iii) D[S,T,C,R] is a 200-dimensional database, created by
adding 133 random features toD[S,T,C] (each random feature
is generated from a uniform distribution). All the compared
methods are evaluated on the four databases, and the re-
trieval results with one query and in feedback Round5 are
shown in Figure 6, Figure 7 and Table 6 (here the results at
other feedback rounds have been omitted for compactness).

11 35 67 200
0.02

0.04

0.06

0.08

0.1

0.12

0.14

Dimension

B
E

P

ReFeat
Euclidean
MRBIR

Figure 6: BEP values of the compared methods
for retrieval with one query evaluated on the four
databases.

11 35 67 200
0.05

0.1

0.15

0.2

0.25

0.3

0.35

Dimension

B
E

P

ReFeat
Qsim
InstRank
MRBIR
BALAS

Figure 7: BEP values of the compared methods in
relevance feedback Round5 evaluated on the four
databases.

Figures 6 and 7 show that every method achieves its best
performance on D[S,T,C] out of the four databases. On
the database D[S,T,C,R] with randomly generated features,
ReFeat outperforms the other methods with the lowest per-
formance degradation, when compared with that onD[S,T,C].
For example, at Round5, ReFeat only degrades 24%, which
is much better than 50% for Qsim, 46% for InstRank, 54%
for MRBIR and 51% for BALAS. These observations indicate
that ReFeat has a good tolerance for random features.

Table 6 shows that Euclidean and InstRank spend the
shortest time in low-dimensional cases, but their process-
ing time increases linearly with respect to the database di-
mension. Qsim, MRBIR and BALAS spend much more time
than ReFeat. ReFeat achieves constant time w.r.t. the
database dimension, either dealing with one query or han-
dling feedbacks. This enables our framework to scale up to
high-dimensional databases without increasing the process-
ing time.

5.4 Parameter Settings
This subsection studies the effect of the three parameters

in ReFeat, i.e., sub-sample size ψ, number of relevance fea-
tures t and trade-off parameter γ.

To gain an insight into the setting of ψ, we measure the
diversity of iTrees in an iForest using the Shannon index
[9]. It is a statistic for measuring the biodiversity of an
ecosystem. The index is increased when having additional
unique species or a greater species evenness. A bigger Shan-
non index indicates a larger diversity. In our experiments,
each image is treated as an ecosystem, and different fea-
ture values represent different species in the ecosystem. The
Shannon index is calculated for each image, and the final
diversity of iTrees in an iForest is obtained by averaging the
Shannon indices over all images. We set ψ = 22, 23, · · · , 212

(with t = 1000 and γ = 0.25), and the resultant diversities
are plotted in Figure 8. It is interesting to note that the
diversity decreases when ψ > 64, although the number of
possible feature values (i.e., possible species) increases. The
BEP values of ReFeat are also shown in Figure 8. Since
the best performance of ReFeat is obtained with ψ = 8 for
our database and there is no benefit to use a large ψ (i.e.,
ψ > 64), we suspect that the optimal setting for any CBIR
task is somewhere between the smallest ψ (= 4) and the

Table 6: Average processing time (in ms) of the compared methods tested on the four databases. Here,
ReFeat, Euclidean, MRBIR, Qsim, InstRank and BALAS are denoted by RF, EU, MR, QS, IR and BA, respectively.

One query Round5
Database Dimension RF EU MR RF QS IR MR BA
D[S] 11 27.8 6.8 679.7 27.8 612.8 10.6 1353.9 332.2
D[S,T] 35 27.8 16.1 687.7 27.8 624.7 22.5 1353.9 410.5
D[S,T,C] 67 27.8 27.2 701.0 27.8 637.7 35.5 1353.9 516.4
D[S,T,C,R] 200 27.8 72.0 733.3 27.8 691.8 89.6 1353.9 848.1

4 8 16 32 64 128 256 512 102420484096
0

0.1

0.2

0.3

0.4

B
E

P

4 8 16 32 64 128 256 512 102420484096

−0.9

−0.6

−0.3

0

A
ve

ra
ge

 S
ha

nn
on

 in
de

x

Sub−sample size: ψ

D(ψ)

One Query
Round1
Round5

Figure 8: The effect of different ψ in ReFeat. Here
the results are presented in terms of BEP values for
retrieval with one query and in feedback Round1
and Round5. D(ψ) is the average Shannon index
calculated for the iTrees in an iForest.

diversity peak. This can be used as an empirical guideline
for setting the sub-sample size.

Figure 9 shows the BEP values of ReFeat as the number
of relevance features t varies from 10, 50, 100, 500, 1000,
2000, 3000, · · · , 9000, to 10000 (with ψ = 8 and γ = 0.25).
It shows that the retrieval performance of ReFeat rapidly in-
creases with the increase of t when t is relatively small. Even
with a sufficiently large t, the performance still appears to
rise without overfitting. These observations make it possi-
ble to improve the performance of ReFeat by adding more
relevance features. However, when selecting t, the trade-off
between performance and processing time should be consid-
ered.

We also study how γ affects the performance of ReFeat

in relevance feedback process. The results are shown in
Figure 10. ReFeat achieves good performance when γ ∈
[0.1, 0.4], signifying that negative images make less contri-
bution than positive ones.

6. DISCUSSION
For a successful application in the proposed framework,

the necessary characteristics of ranking models are: (i) each
individual model provides a ranking of images through some
profile underlying the database; and (ii) each model is gen-
erated efficiently so that the multiple models, representing
multiple profiles of the database, can be generated very
quickly to form the relevance feature space. We show in this
paper that iTrees work well in our framework, but we are not

10 10002000 4000 6000 8000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of relevance features: t
B

E
P

One Query
Round1
Round5

0.1396 0.1391

0.2258

0.32250.3216

0.2256

0.3143

0.2213

0.1368

Figure 9: The effect of different t in ReFeat. Here
the results are presented in terms of BEP values for
retrieval with one query and in feedback Round1
and Round5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.14

0.2

0.26

0.32

Value of γ

B
E

P

Round1
Round3
Round5

Figure 10: The effect of different γ in ReFeat. Here
the results are presented in terms of BEP values for
retrieval in feedback Round1, Round3 and Round5.

aware of any other existing anomaly detection models2 that
satisfy the above characteristics. Most of the models such
as distance-based, density-based or SVM anomaly detection
methods either build a global model (thus cannot represent
different profiles of the database) or have high computational
cost in terms of time and space complexities [2]. Whether

2An anomaly detection model is basically a ranking model
which attempts to rank the most anomalous instances at the
top to the most normal instances at the bottom.

any other ranking model satisfies these characteristics is an
open problem.

7. CONCLUSIONS
This paper proposes a novel ranking framework for content-

based image retrieval with a unique relevance feature map-
ping obtained from an ensemble of ranking models. We em-
ploy an ensemble of iTrees to transform from the original
feature space to the proposed new relevance feature space.
We show that the new relevance feature space is more suit-
able than the original one for ranking database images with
respect to a given query as well as subsequent feedbacks.
We also show that the relevance feature space accounts for
the significant performance improvement of several existing
ranking methods when compared to those applied in the
original feature space. Moreover, our proposed new ranking
scheme is better than the others when they are evaluated
in the same footing, in terms of both retrieval performance
and time complexity.

The proposed framework has the following unique charac-
teristics: (i) it utilizes no distance or similarity measure and
has linear time and space complexities w.r.t. the database
size when building its model and mapping the database off-
line; (ii) it has constant on-line retrieval time, irrespective
of the relevance feedback rounds; (iii) it can deal with high-
dimensional image databases with constant time complexity;
and (iv) it has a good tolerance for random features.

Theoretical and intuitive reasons underpinning the rele-
vance feature mapping will be developed in the near future.
We will also study the applications of ReFeat on other types
of retrieval tasks.

Acknowledgements
This work was completed while Guang-Tong was visiting
Monash University partly supported by a scholarship from
Shandong University. Zhi-hua Zhou has given Guang-Tong
a strong foundation in CBIR when he visited Nanjing Uni-
versity before this project. Zhouyu Fu has provided many
helpful comments in the early draft. Suggestions from the
anonymous reviewers have also helped to improve the clarity
of this paper.

8. REFERENCES
[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern

Information Retrieval. Addison Wesley Longman,
Boston, MA, 1999.

[2] V. Chandola, A. Banerjee, and V. Kumar. Anomaly
detection: A survey. ACM Computing Surveys,
41(3):15:1–58, 2009.

[3] G. Ciocca and R. Schettini. A relevance feedback
mechanism for content-based image retrieval.
Information Processing and Management,
35(5):605–632, 1999.

[4] R. Datta, D. Joshi, J. Li, and J. Z. Wang. Image
retrieval: Ideas, influences, and trends of the new age.
ACM Computing Surveys, 40(2):5:1–60, 2008.

[5] A. Frome, Y. Singer, F. Sha, and J. Malik. Learning
globally-consistent local distance functions for
shape-based image retrieval and classification. In
Proceedings of the 11th International Conference on
Computer Vision, pages 1–8, Rio de Janeiro, Brazil,
2007.

[6] G. Giacinto and F. Roli. Instance-based relevance
feedback for image retrieval. In Advances in Neural
Information Processing Systems 17, pages 489–496,
Vancouver, Canada, 2005.

[7] J. He, M. Li, H. Zhang, H. Tong, and C. Zhang.
Manifold-ranking based image retrieval. In Proceedings
of the 12th ACM International Conference on
Multimedia, pages 9–16, New York, 2004.

[8] X. He, W.-Y. Ma, and H. Zhang. Learning an image
manifold for retrieval. In Proceedings of the 12th ACM
International Conference on Multimedia, pages 17–23,
New York, 2004.

[9] C. J. Krebs. Ecological Methodology. HarperCollins,
New York, 1989.

[10] F. T. Liu, K. M. Ting, and Z.-H. Zhou. Isolation
forest. In Proceedings of the 8th IEEE International
Conference on Data Mining, pages 413–422, Pisa,
Italy, 2008.

[11] N. Panda and E. Y. Chang. Efficient top-k hyperplane
query processing for multimedia information retrieval.
In Proceedings of the 14th ACM International
Conference on Multimedia, pages 317–326, Santa
Barbara, CA, 2006.

[12] N. Rasiwasia, P. J. Moreno, and N. Vasconcelos.
Bridging the gap: Query by semantic example. IEEE
Transactions on Multimedia, 9(5):923–938, 2007.

[13] Y. Rui, T. S. Huang, and S. Mehrotra. Content-based
image retrieval with relevance feedback in mars. In
Proceedings the 1997 International Conference on
Image Processing, pages 815–818, Washington, DC,
1997.

[14] Y. Rui, T. S. Huang, M. Ortega, and S. Mehrotra.
Relevance feedback: A power tool for interactive
content-based image retrieval. IEEE Transactions on
Circuits and Systems for Video Technology,
8(5):644–655, 1998.

[15] A. W. M. Smeulders, M. Worring, S. Santini,
A. Gupta, and R. Jain. Content-based image retrieval
at the end of the early years. IEEE Transactions on
Pattern Analysis and Machine Intelligence,
22(12):1349–1380, 2000.

[16] G. Wu, E. Y. Chang, and N. Panda. Formulating
context-dependent similarity functions. In Proceedings
of the 13rd ACM International Conference on
Multimedia, pages 725–734, Singapore, 2005.

[17] R. Zhang and Z. M. Zhang. Balas: Empirical bayesian
learning in the relevance feedback for image retrieval.
Image and Vision Computing, 24(3):211–223, 2006.

[18] X. S. Zhou and T. S. Huang. Relevance feedback in
image retrieval: A comprehensive review. Multimedia
Systems, 8(6):536–544, 2003.

[19] Z.-H. Zhou, K.-J. Chen, and H.-B. Dai. Enhancing
relevance feedback in image retrieval using unlabeled
data. ACM Transactions on Information Systems,
24(2):219–244, 2006.

[20] Z.-H. Zhou and H.-B. Dai. Query-sensitive similarity
measure for content-based image retrieval. In
Proceedings of the 6th IEEE International Conference
on Data Mining, pages 1211–1215, Hong Kong, China,
2006.

APPENDIX
This section details the methodology of iForest [10]3, which
employs a two-stage process to detect anomalies. We provide
some insights on how each iTree measures the relevance of
instances with respect to a profile underlying the data. It
helps to understand the relevance feature space.

In the first stage, iForest builds a collection of iTrees using
random sub-samples of a data set. Each iTree is constructed
by recursively random-partitioning a sub-sample along axis-
parallel coordinates until instances are isolated. Here, an
isolated instance is an instance that is being separated from
the rest of instances by these random partitions. Details
of this process can be found in Algorithms 1 and 2. Note
that an iTree models a profile of the given random sub-
sample, and different iTrees describe different profiles due to
the randomness incurred in both the sub-sampling process
and the tree building process.

Algorithm 1 : iForest(X , t, ψ)

Inputs: X - input data, t - number of iTrees, ψ - sub-sample
size
Output: a set of t iTrees

1: Initialize Forest
2: for i = 1 to t do
3: X ← sample(X , ψ)
4: Forest ← Forest ∪ iTree(X)
5: end for
6: return Forest

Algorithm 2 : iTree(X)

Inputs: X - input data
Output: an iTree

1: if |X| ≤ 1 then
2: return exNode{Size ← |X|}
3: else
4: let A be a list of attributes in X
5: randomly select an attribute a ∈ A
6: randomly select a split point p from max and min

values of attribute a in X
7: Xl ← filter(X, a < p)
8: Xr ← filter(X, a ≥ p)
9: return inNode{Left ← iTree(Xl),

10: Right ← iTree(Xr),
11: SplitAtt ← a,
12: SplitV alue ← p}
13: end if

In the second stage, iForest calculates an anomaly score
for each test instance based on its average path length. A
path length is derived by passing the instances through an
iTree until a specified height limit is reached. In our ex-
periments, we set the height limit h = ceiling(log2 ψ) as in
[10]. This process is given by Algorithm 3. Here, a short
path length means that we can easily isolate the instance
from the majority of instances within a few random parti-
tions. That is to say, instances having short path lengths
always differ from the majorities on some characteristics.
Recall that an iTree describes a data profile from a given

3Software download at
http://sourceforge.net/projects/iforest/.

sub-sample. Thus, instances having short path length are
considered to be irrelevant to this data profile by having
very different characteristics from the given sub-sample. On
the other hand, instances with long path length are rele-
vant to the profile by having similar characteristics. So the
path length stipulated by an iTree actually measures the
relevance of an instance with respect to the profile modeled
by this iTree: a short (long) path length indicates that the
instance is irrelevant (relevant) to the profile. Under the
view of anomaly detection, instances identified to be irrele-
vant to the various profiles modeled by a number of iTrees
are deemed to be anomalies, and instances relevant to the
various profiles are normal points.

Algorithm 3 : PathLength(x, T, e)

Inputs: x - an instance, T - an iTree, e - current path
length; to be initialized to zero when first called
Output: path length of x

1: if e ≥ h (height limit) or T is an external node then
2: return e + c(T.Size)

{c(m) = 2
(
ln(m− 1)− (m− 1)/m + E

)
(E ≈ 0.5772

is Euler’s constant)}
3: end if
4: a ← T.SplitAtt
5: if T.SplitV alue ≤ xa then
6: return PathLength(x, T.Right, e + 1)
7: else if xa < T.SplitV alue then
8: return PathLength(x, T.Left, e + 1)
9: end if

