Mass Estimation and Its Applications

%
Kai Ming Ting, Guang-Tong Zhou , Fei Tony Liu, James Tan Swee ChuanT
Gippsland School of Information Technology
Monash University
o]) Australia]
{kaiming.ting,tony.liu}@monash.edu, zhouguangtong@gmail.com,

jamestansc@unisim.edu.sg

ABSTRACT

This paper introduces mass estimation—a base modelling
mechanism in data mining. It provides the theoretical basis
of mass and an efficient method to estimate mass. We show
that it solves problems very effectively in tasks such as in-
formation retrieval, regression and anomaly detection. The
models, which use mass in these three tasks, perform at least
as good as and often better than a total of eight state-of-the-
art methods in terms of task-specific performance measures.
In addition, mass estimation has constant time and space
complexities.

Categories and Subject Descriptors

1.2 [Artificial Intelligence]: Miscellaneous; 1.5 [Pattern
Recognition]: General

General Terms
Algorithms, Theory

1. INTRODUCTION

‘Estimation of densities is a universal problem
of statistics (knowing the densities one can solve
various problems.)” — V.N. Vapnik [16].

Density estimation has been the base modelling mecha-
nism used in many techniques designed for tasks such as
classification, clustering, anomaly detection and informa-
tion retrieval. For example in classification, density estima-
tion is employed to estimate class-conditional density func-
tion (or likelihood function) p(x|j) or posterior probability

*Guang-Tong is a student at School of Computer Science
and Technology, Shandong University, China. He was vis-
iting Monash University, supported by a scholarship from
Shandong University, when this research was conducted.

JrJaumes is now at SIM University, Singapore.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

KDD' 10, July 25-28, 2010, Washington, DC, USA.

Copyright 2010 ACM 978-1-4503-0055-1/10/07 ...$10.00.

p(j|z)—the principal function underlying many classifica-
tion methods e.g., mixture models, Bayesian networks, and
Naive Bayes. Examples of density estimation include kernel
density estimation, k-nearest neighbours density estimation,
maximum likelihood procedures or Bayesian methods.

‘We shows in this paper that a new base modelling mecha-
nism called mass estimation possesses different properties
from those offered by density estimation:

e A mass distribution stipulates an ordering from core
points to fringe points in a data cloud. In addition, this
ordering accentuates the fringe points with a concave
function—fringe points have markedly smaller mass
than points close to the core points. These are the
fundamental properties required for many tasks, in-
cluding anomaly detection and information retrieval.
In contrast, density estimation is not designed to pro-
vide an ordering.

e Mass estimation is more efficient than density estimation
because mass is computed by simple counting and it
requires only a small sample through an ensemble ap-
proach. Density estimation (often used to estimate
p(z|7) and p(j|z)) require a large sample size in or-
der to have a good estimation and is computationally
expensive in terms of time and space complexities [7].

e Mass can be interpreted as a measure of relevance with
respect to the concept underlying the data, i.e., core
points indicate that they are highly relevant and fringe
points indicates that they are less relevance. We demon-
strate in this paper that a relevance feature space con-
sists of a vector of masses estimated from data is very
effective for three data mining tasks: information re-
trieval, regression and anomaly detection.

Mass estimation has two advantages in relation to effi-
cacy and efficiency. First, the concavity property mentioned
above ensures that fringe points are ‘stretched’ to be farther
from the core points in a mass space—making it easier to
separate fringe points from those points close to core points.
This property, otherwise hidden, can then be exploited by
a data mining algorithm to achieve a better result for the
intended task than the one without it. We show the effi-
cacy of mass in improving the task-specific performance of
four existing state-of-the-art algorithms in information re-
trieval and regression tasks in this paper. The significant
improvements are achieved through a simple mapping from
the original space to a mass space using the mass estimation
mechanism introduced here.

Table 1: Symbols and notations.

R A real domain of u dimensions

T An one-dimensional instance in R

X An instance in R"

D A data set of x, where |D| =n

D A subset of D, where |D| = ¢

z An instance in R*

D’ A data set of z

h Level of mass distribution

t Number of mass distributions in mass(.)

m;(.) Mass base function defined using binary split s;

mass(.) Mass function which returns a real value
mass(.) Mass function which returns a vector of ¢ values

Second, mass estimation offers to solve a problem more
efficiently using the ordering derived from data directly—
without distance or related expensive calculation—when the
problem demands ranking. An example of inefficient appli-
cation is in anomaly detection tasks where many methods
have employed distance or density—a computationally ex-
pensive process—to provide the required ranking. An ex-
isting state-of-the-art density-based anomaly detector LOF
[4] (which has quadratic time complexity) cannot complete
a job involving half a million data points in less than two
weeks; yet the mass-based anomaly detector we have intro-
duced here completes it in less than 40 seconds! Section 4.3
provides the detail of this example.

Section 2 introduces mass and mass estimation, together
with their theoretical properties. We also describe an
efficient method to estimate mass in practice. Section 3 de-
scribes a mass-based formalism which serves as a basis of ap-
plying mass to different data mining tasks. We present a re-
alisation of the formalism in three different tasks:
information retrieval, regression and anomaly detection, and
report the empirical evaluation results in Section 4. The re-
lation to kernel density estimation is given in Section 5. We
provide related work, the conclusions and future work in the
last two sections.

2. MASSAND MASSESTIMATION

Data mass or mass is defined as the number of points
in a region; and two groups of data can have the same mass
regardless of the characteristics of the regions (e.g., density,
shape or volume). Mass in a given region is defined by a
rectangular function which has the same value for the entire
region in which the mass is measured.

Identifying a region occupied by a group of data in itself is
a clustering problem, but mass can nonetheless be estimated
without clustering. We show in this section that mass can
be estimated in a way similar to kernel density estimation
without involving clustering at all by using a function similar
to a kernel function.

Note that mass is not a probability mass function,
and it does not provide probability, as probability den-
sity function does through integration.

The detail of mass estimation is provided in the following
two subsections. In Section 2.1, we show how to estimate
a mass distribution for a given data set, and the theoret-
ical properties of mass estimation. Section 2.2 describes
an approximation to the theoretical mass estimation which
works more efficiently in practice. This paper focuses on

one-dimensional mass distribution only. The symbols and
notations used are provided in Table 1.

2.1 Massdistribution estimation

We first show level-1 mass distribution estimation in Sec-
tion 2.1.1. We then generalise the treatment for high level
mass estimation in Section 2.1.2.

2.1.1 Level-1 massdistribution estimation

Here, we employ a binary split to divide the data set into
two separate regions and compute the mass in each region.
The mass distribution at point z is estimated to be the sum
of all ‘weighted’ masses from regions occupied by z, as a
result of n — 1 binary splits for a set of data of size n.

Let 21 <22 < -+ < xp—1 < x, on the real linel, T, €ER
and n > 1. Let s; be the binary split between x; and x;11,
yi%lding two non-empty regions having two masses m?’ and
my;-.

Definition 1. Mass base function: m;(x) as a result of s;,
is defined as
ma(z) = mE if x is on the left of s;
ST mP o if oois on the right of s;

Note that m¥ =n —mP =.

Definition 2. Mass distribution: mass(xq) for a point xq €
{z1,22, "+ ,Tn-1,Zn} is defined as a summation of a series
of mass base function m;(x) weighted by p(s;) over n — 1
splits as follows.

mass(xzq) = imi(lia)p(si)

n—1 a—1
= Y mip(si) + > mip(s))
i=a Jj=1

n—

= Yipls) £ Y-l ()

i=a

p(si) is the probability of selecting s;. Note that we have

defined » 7 f(i) = 0, when r < g for any function f.
Example. For an example of five points z1 < z2 < x3 <
24 < w5, Figure 1 shows the resultant m;(z) due to each
of the four binary splits si, sz, s3, s4; and their associated
masses over four splits are given below:
mass(z1) = 1p(s1) + 2p(s2) + 3p
mass(z2) = 4p(s1) + 2p(s2) + 3p
mass(zs) = 4p(s1) + 3p(s2) + 3p

(s2)

)

NN N
v
w

)
) +4p(s4
)
)

mass(xa) = 4p(s1) + 3p(s2) + 2p(s3) + 4p(sa
mass(xs) = 4p(s1) + 3p(s2) + 2p(s3) + 1p(s4)

For a given data set, p(s;) can be estimated on the real
line as p(si) = (ziy1 — x)/(xn — x1) > 0, as a result of
random selection of splits based on a uniform distribution?.

For a point © ¢ {z1,x2,** ,Zn_1,Zn}, mass(z) is defined
as an interpolation between two masses of adjacent points
z; and x;4+1, where x; < x < T;41.

n data having a pocket of points of the same value, an
arbitrary order can be ‘forced’ by adding multiples of an in-
significant small value € to each point of the pocket, without
changing the general distribution.

2The estimated mass(z) values can be calibrated to a finite
data range A by multiplying a factor (z, — z1)/A.

i R_ (. : R_
m, —1: m1—4 m2—2 ' r’r12—3
4 4 !
3 3
2 2
1— 1 E
'Sy 'S,
—o0— 0o o o o
% %3 % s % %3 % %

(a) ms(z) due to $1 (b) m;(x) due to s2

m'éz 3 E m§= 2 m;: 4 Emf:: 1
! 4
3
2
: 1 —
1S3 1Sy
——o—o0——e—'1-0—
Xl X2 X3 X4 XS Xl X2 X3 X4 X5

(c) mi(x) due to s3 (d) mi(x) due to sa

Figure 1: Examples of mass base function m;(z) due to each of the four binary splits: s, s, s3, S4.

Theorem 1. mass(zq) is the mazimum at a = n/2 for
any density distribution of {x1,--+ ,xn}; and the points x,
where x1 < x2 < -+ < Tp—1 < Tn on the real line, can be
ordered based on mass as follows.

mass(zq) < mass(xat1), a <n/2
mass(xq) > mass(Tat1), a >n/2

Proor. The difference in mass between two subsequent
points x, and x,4+1 differs in only one term, i.e., the mass
for p(s,) only; and Vi # a, the terms for p(s;) have the same
mass.

mass(zq) — mass(Tat1)

= Xrlip(s) 4+ 52 (n— 5)p(sy)
- Z;L;(}Hl) ip(si) — Z;Ll(n = 7)p(s;)
ap(sa) — (n — a)p(sa)

(2a —n)p(sa) (2)
Thus,
negative if a <n/2
sign(mass(zq) — mass(xe+1)) =< 0 ifa=mn/2
positive if a > n/2
O

The point x, /2 can be regarded as the median. Note that
the number of points with the maximum mass depends on
whether n is odd or even: When n is an odd integer, only one
point has the maximum mass at Tmedian, Where median =
[n/2]; when n is an even integer, two points have the max-
imum mass at a =n/2 and a =1+ n/2.

Theorem 2. mass(z,) is a concave function defined w.r.t.
{z1,22,...,2n}, when p(s;) = (Ti+1 — i)/ (Tn — x1).

PROOF. We only need to show that the gradient of mass(x,)
is non-increasing, i.e., g(zq) > g(xa+1) for each a.

Let g(zq) the gradient between z, and zq4+1, and from

(2):
mass(Ta+1) — mass(rq) n—2a

o) = M) -

Tn — 1
The result follows: g(za) > g(ze+1) fora € {1,2,...
]

,n—1}.

Corollary 1. A mass distribution estimated using binary
splits stipulates an ordering, based on mass, of the points in a
data cloud from x, o (with the mazimum mass) to the fringe
points (with the minimum mass at either side of x,/2), irre-
spective of the density distribution including uniform density
distribution.

Corollary 2. The concavity of mass distribution stipulates
that fringe points have markedly smaller mass than points
close to xy, /5.

The implication from Corollary 2 is that fringe points are
‘stretched’ to be farther away from the median in a mass
space than in the original space—making it easier to sep-
arate fringe points from those points close to the median.
(The mass space is mapped from the original space through
mass(x).) This property, otherwise hidden, can then be ex-
ploited by a data mining algorithm to achieve a better result
for the intended task than the one without it. We will show
that this simple mapping significantly improves the perfor-
mance of four existing algorithms in information retrieval
and regression tasks in Sections 4.1 and 4.2.

Equation (1) is sufficient to provide a mass distribution
corresponds to a unimodal density function or a uniform
density function. To better estimate multi-modal distribu-
tions, a high level mass distribution is required. This is
provided in the following.

2.1.2 Level-n massdistribution estimation

Definition 3. Level-h mass distribution for a point x, €
{z1,...,2n}, where h < n, is expressed as

n—1
mass(Za, h) Z massi(za, h-1)p(s;)
i=1
n—1

= Z massy (za, h-1)p(si) +

i=a

i massf” (za, h-1)p(s;) 3)

j=1

Here a high level mass distribution is computed recursively
by using the mass distributions obtained at lower levels. A
binary split s; in a level-h(>1) mass distribution produces
two level-(h-1) mass distributions: (a) massy(x, h-1)—the
mass distribution on the left of split s; which is defined using
{z1,...,2:}; and (b) mass(z, h-1)—the mass distribution
on the right which is defined using {xi4+1,...,2n}. Equa-
tion (1) is the mass distribution at level-1.

Figure 2 shows part of the intermediate process in calcu-
lating mass’ (xz, h = 1) and mass(z,h = 1) for two exam-
ple splits s;=7 and s;=11 in order to obtain mass(z, h = 2).

Using the same analysis in the proof for Theorem 1, the
above equation can be re-expressed as:

‘-e-mass h=1 mass h=2 -+ mass h=3 ‘ | -©-mass h=1
16 8 12 12 15 mass h=2 |73
-6-mass h=1 + mass h=3
1 IR 10 mass :zg 10
+ mass h=! 4y
(7] “— @9 8 8 - @ 10 + {; 5 -
& 5 4 5 2 + * B
E 8 #“e £ 6 6 & E } =
*++++++++4 . +
ot T, 4 # Fid # 4 st T, 25
4 + - + 2 +* - i \'\
S e s o T [wsy] T b e
Pt T e Sl ,f"-\‘._ o “x,_ _—-densit ~“~.____________-*-~i-_~
0 Jo ol -- - -0 0 y 0
0 0.2 0.4 0.6 0.8 1 0 0.5 1 0 0.2 0.4 0.6 0.8 1
(a) uniform (b) trimodal (c) skew

Figure 3: Examples of level-h mass distribution for

h = 1,2,3 and density distribution from kernel density

estimation: Gaussian kernel with bandwidth= 0.1. All three data sets have 20 points each.

9 mess(xh=1) | masscn=1)
8 : :
7rmss.:‘(x,h:1)i E
6 , ,
5 /\E E
a ' '
551:11 x
Figure 2: Two examples of mass’(z,h = 1) and

massf(z,h = 1) due to s,—7r and s,—1; in the process
to get mass(z,h = 2) from a data set of 20 points
with uniform density distribution. The resultant
mass(xz,h = 2) is shown in Figure 3(a).

mass(Tati, h) = mass(xa, h)+

[massf(zq, h-1) — masst (zq, h-1)p(sa), h>1
{(n—mm@u7 B SEINC

As aresult, only the mass for the first point ;1 needs to be
computed using Equation (3). Note that it is more efficient
to compute the mass distribution from the above equation
which has time complexity O(n"*1); the computation using
Equation (3) has O(n"*2).

Definition 4. A level-h mass distribution stipulates an or-
dering of the points in a data cloud from a-core points to the
fringe points. The a-core point(s) of a data cloud have the
highest mass value within o distance from the core point(s).
A small o defines local core point(s); and a large o, which

covers the entire value range for z, defines global core point(s).

Examples of level-h mass estimation in comparison with
kernel density estimation are provided in Figure 3. Note that
h = 1 mass estimation treats the entire data as a group, and
it produces a concave function. As a result, an h = 1 mass
estimation always has its global core point(s) at the median,
regardless of the underlying density distribution—see three
examples of h = 1 mass estimation in Figure 3.

For A > 1 mass distribution, though there is no guarantee
for a single concave function for the entire data set, each
cluster within the data cloud still exhibits a concave func-
tion and it becomes more distinct (as a concave function)
as h increases. This is shown in Figure 3(b) which has a
trimodal density distribution. Notice that the h > 1 mass
distributions have three a-core points for some «, e.g., 0.2.

Traditionally, one can determine the core-ness or the fringe-
ness of a non-uniformly distributed data to some degree by

z
£8 1

8%

2808

T <

E‘% —#-Gaussian
gg 0.6 -#-COREL

?8 1 100 200 300 400 500

¢, number of mass distributions
(b)

Figure 4: (a) An example of practical mass distribu-
tion mass(z, h|D) for 5 points, assuming a rectangu-
lar function for each point. (b) Correlation between
the orderings provided by mass(z,1) and mass(z,1)
for two data sets: one-dimensional Gaussian density
distribution and the COREL data set used in Section
4.1 (whose result is averaged over 67 dimensions).

using density or distance (but not in uniform density dis-
tribution.) Mass allows one to do that in any distributions
without density or distance calculation—the key computa-
tional expense in all methods that employ them. For exam-
ple in Figure 3(c) which has a skew density distribution,
the distinction between near fringe points and far fringe
points are less obvious using density, unless distances are
computed to reveal the difference. In contrast, mass distri-
bution depicts the relative distance from Zmedian using the
fringe points’ mass values, without further calculation.

This section has described properties of mass distribution
from a theoretical perspective. Though it is possible to esti-
mate mass distribution using Equations (1) and (3), they are
limited by its high computational cost. We suggest a practi-
cal mass estimation method in the next section. We use the
term ‘mass estimation’ and ‘mass distribution estimation’
interchangeably hereafter.

2.2 Practical mass estimation

Here we devise an approximation to Equation (3) using
random subsamples from the given data set.

Definition 5. mass(x, h|D) is the approzimate mass distri-
bution for a point x € R, defined w.r.t. D = {x1,...,24},
where D is a random subset of the given data set D, and
Y < |D], h <.

Assume a rectangular function for each point z € D (as
shown in Figure 4(a)), mass(z, h|D) is implemented using
a lookup table with each rectangle function covers a range
(zic1 +2:)/2 < x < (it1 + 24)/2 for each point z; € D
having the same mass(x;, h|D) value. The range for each of
the two end-points is set to have equal length on either side
of the point. In addition, a number of mass distributions

needs to be constructed from different samples in order to
have a good approximation, that is,

ass(z, h) = % " mass(z, h|Dy))

k=1

The computation of mass(z, h) using the given data set D
costs O(|D|"*1); whereas mass(x, h) costs O(cyp" ™).

Only relative, not absolute, mass is required to provide
an ordering between instances. Because the relative mass is
w.r.t. median and median is a robust estimator [1]—that is
why small subsamples produce a good order estimator.

Figure 4(b) shows the correlation (in terms of Spearman’s
rank correlation coefficient) between the orderings provided
by mass(z, 1) using the entire data set and mass(z, 1) using
1 = 8 in two data sets, each having 10000 data points. They
achieve very high correlations when ¢ > 100.

The ability to use a small sample, rather than a large sam-
ple, is a key characteristic of mass estimation. We show in
this paper that mass(z, h|D) can be employed very effec-
tively for three different tasks: information retrieval, regres-
sion and anomaly detection, through a mass-based formal-
ism to be described in the next section. Although the mass
estimation is designed for one dimension only, we show that
it can be employed to solve multi-dimensional problems.

3. MASS-BASED FORMALISM
Let x; = [2,...,2']; x; € D; and z; = [2},...,2!]; 2; €
D’. The proposed formalism consists of three components:

C1 The first component constructs a number of mass distri-
butions. A mass distribution mass(z?, h|D) for dimen-
sion d is obtained using our proposed mass estimation,
as given in Definition 5. A total number of ¢ mass dis-
tributions is generated which forms mass(x) — R,
where ¢ > u. This procedure is given in Algorithm 1.

C2 The second component maps the data set D in the orig-
inal space of u dimensions into a new data set D’ of
t dimensions using mass(x) = z. This procedure is
described in Algorithm 2.

C3 The third component employs a decision rule to deter-
mine the final outcome for the task at hand. It is a
task-specific decision function applied to z in the new
feature space.

Algorithm 1 : Mass Estimation(D,), h, t)

Inputs: D - input data; v - data size for Dg; h - level of
mass distribution; ¢ - number of mass distributions.
Output: mass(x) — R' - a function consists of ¢ mass
distributions, mass(z?, h|Dy).

1: for k=1totdo

2: Dy < arandom subset of size ¢ from D;

3: d < arandomly selected dimension from { 1,...,u };
4: Build mass(z®, h|Dy);

5: end for

The formalism becomes a blueprint for different tasks.
Components C1 and C3 are mandatory in the formalism,
but component C2 is optional, depending on the task.

For information retrieval and regression, the task-specific
C3 procedure is simply using an existing algorithm for the
task except that the process is carried out in the new mapped
mass space, instead of the original space. This procedure

is given in Algorithm 3. The task-specific C3 procedure
for anomaly detection is shown in steps 2-5 in Algorithm 4.
Note that anomaly detection requires C1 and C3 only;
whereas the other two tasks require all three components.

Algorithm 2 : Mass_Mapping(D, mass)

Inputs: D - input data; mass - a function consists of ¢ mass
distributions, mass(z?, h|D).
Output: D’ - a set of mapped instances z; in ¢ dimen-
sions.

1: for i =1 to |D| do

2.z — ﬁgs/s(xi);

3: end for

Algorithm 3 : Perform task in MassSpace(D,, h,t)

Inputs: D - input data; ¥ - data size for D; h - level of
mass distribution; ¢ - number of mass distributions.
Output: Task-specific model.
1: mass(.) — Mass_Estimation(D, t, h, t);
2: D' < Mass_Mapping(D, mass);
3: Perform task (information retrieval or regression) in the
mapped mass space using D’;

Algorithm 4 for Anomaly Detection : MassAD(D, v, h,t)

Inputs: D - input data; ¥ - data size for D; h - level of
mass distribution; ¢ - number of mass distributions.
Output: Ranked instances in D.
1: mass(.) — Mass_Estimation(D, ¥, h, t);
: for i=1to|D| do
m; < Average of t masses from Ba_s/s(xi);
: end for
: Rank instances in D based on m; with low mass denotes
anomalies and high mass denotes normal points;

TS W N

4. EXPERIMENTS

We evaluate the performance of MassSpace and MassAD for
three tasks in the following three subsections. In informa-
tion retrieval and regression tasks, the mass estimation uses
¥ = 8 and t = 1000. These settings are obtained by exam-
ining the rank correlation as shown in Figure 4(b)—having
a high rank correlation between mass(z,1) and mass(zx,1).
Note that this is done before any method is applied and no
further fine-tuning. In anomaly detection tasks, ¥ = 256
and t = 100 are used so that they are comparable to those
used in a benchmark method for a fair comparison. h = 1
is used in all tasks, unless stated otherwise. All the ex-
periments are run in Matlab and conducted on a Pentium 4
machine with an AMD Opteron machine with a 1.8 GHz pro-
cessor and 4 GB memory. The performance of each method
is measured in terms of task-specific performance measure
and runtime. Paired t-tests at 5% significance level are con-
ducted to examine whether the difference in performance is
significant between two algorithms under comparison.

Note that we treat information retrieval and anomaly de-
tection as unsupervised learning tasks. Classes/labels in the
original data are used as ground truth for evaluation of per-
formance only; they are not used in building mass distribu-
tions. In regression, only the training set is used to build
mass distributions in step 1 of Algorithm 3; the mapping in
step 2 is conducted for both the training and testing sets.

Table 2: CBIR results (the higher the better for BEP.)

BEP (x107%) Processing time (second)

MRBIR® MRBIR | Qsim’ Qsim | InstR” InstR | MRBIR" MRBIR | Qsim’ Qsim | InstR” InstR
One query | 11.52 9.69 10.31 7.78 10.31 7.78 1.980 1.111 | 0.410 0.034 0.410 0.034
Round 1 15.14 12.72 | 15.39 10.59 | 13.45 9.40 2.499 2.155 | 0.588 0.078 | 0.558 0.046
Round 2 16.81 13.90 | 17.46 11.81 | 15.07 9.99 2.501 2.155 | 0.646 0.139 | 0.559 0.047
Round 3 17.94 14.75 | 18.46 12.59 | 16.15 10.36 2.499 2.155 | 0.737 0.227 | 0.560 0.048
Round 4 18.74 15.33 | 19.18 13.16 | 16.96 10.78 2.501 2.155 | 0.862 0.355 | 0.561 0.049
Round 5 19.39 15.71 | 19.62 13.55 | 17.62 11.05 2.499 2.155 | 1.016 0.516 | 0.562 0.050

Table 3: Regression results (the smaller the better for MSE; the larger the better for SCC.)

data MSE (x10~?) SCC (x1079) Processing time | Factor increase
size u | SVR" SVR W/D/L SVR’ SVR W/D/L | SVR’ SVR time dimension
tic 9822 85 | 5.58 5.62 17/0/3 2.12 1.07 18/0/2 | 63.61 29.85 2.1 12
wine_white | 4898 11 | 1.21 1.36 20/0/0 | 45.18 38.60 20/0/0 | 17.30 7.24 2.4 91
quake 2178 3 | 2.86 2.92 18/0/2 0.84 0.31 14/0/6 | 3.18 1.09 2.9 333
wine_red 1599 11| 1.62 1.62 11/0/9 | 38.20 37.76 13/0/7 | 2.00 0.76 2.6 91
concrete 1030 8 | 0.33 0.57 20/0/0 | 92.62 87.17 20/0/0 | 1.08 0.44 2.5 125

4.1 Content-Based Image Retrieval

We use a Content-Based Image Retrieval (CBIR) task as
an example of information retrieval. The MassSpace ap-
proach is compared with three state-of-the-art CBIR meth-
ods that deal with relevance feedbacks: a manifold based
method MRBIR [9], and two recent techniques for improving
similarity calculation, i.e., Qsim [19] and InstRank [8]; and
we employ the Euclidean distance to measure the similar-
ity between instances in these two methods. The default
parameter settings are used for all these methods. Because
the same CBIR method is employed in the mapped space in
the MassSpace approach, we denote them as MRBIR', Qsim’
and InstRank’ for those employ MRBIR, Qsim and InstRank,
respectively.

Our experiments are conducted using the COREL image
database [18] of 10000 images, which contains 100 categories
and each category has 100 images. Each image is repre-
sented by a 67-dimensional feature vector, which consists
of 11 shape, 24 texture and 32 color features. To test the
performance, we randomly select 5 images from each cate-
gory to serve as the initial queries. For a query, the images
within the same category are regarded as relevant and the
rest are irrelevant. For each query, we continue to perform
5 rounds of relevance feedback. In each round, 2 positive
and 2 negative feedbacks are provided. This relevance feed-
back process is also repeated 5 times, each up to 5 feedback
rounds. Finally, the average results with one query and in
different feedback rounds are recorded. The retrieval perfor-
mance is measured in terms of Break-Even-Point (BEP) [19,
18] of the precision-recall curve. The online processing time
reported is the time required in each method for a query
plus the stated feedback rounds. The reported result is an
average over 5 x 100 runs for query only; and an average over
5 x 100 x 5 runs for query plus feedbacks. The offline costs
of constructing the mass distributions and the mapping of
10000 images are 2.87 and 1.25 seconds, respectively.

The results are presented in Table 2 where the best per-
formance at each round has been boldfaced. The results are
grouped in pairs for ease of comparison.

The BEP results clearly show that the MassSpace ap-
proach achieves a better retrieval performance than that
using the original space in all three methods MRBIR, Qsim

and InstR, regardless it is with one query only or in rele-
vance feedbacks. Paired t-tests at 5% significance level also
indicate that the MassSpace approach significantly outper-
forms each of the three methods in all experiments, without
exception. These results show that the mass space provides
useful additional information that is hidden in the original
space.

The processing time for each of the three methods in the
mass space is expected to be longer than that in the original
space because the number of dimensions in the mass space
is significantly higher than those in the original space, where
t = 1000 and u = 67.

Figure 5(a) shows an example of performance for InstR'—
BEP increases as t increases until it reaches a plateau at
some t value; and the processing time for InstR’ is linear
w.r.t. the number of dimensions of the mass space, t.

4.2 Regression

In this experiment, we compare SVR' with SVR—support
vector regression [16] that employs the mapped mass space
versus that employs the original space. SVR is the e-SVR
algorithm with RBF kernel, implemented by LIBSVM [6].
SVR is chosen here because it is one of the top performing
regression models.

We utilize five benchmark data sets including four se-
lected from UCI repository [2] and one earthquake data
[14] from www.cs.waikato.ac.nz/ml/weka/ distribution. The
data characteristics are summarized in the first three columns
of Table 3. We select only those data sets which are more
than 1000 data points with all real-valued attributes and
without missing values—in order to get a result with a higher
confidence than those obtained from small data sets.

On each data set, we randomly sample two-thirds of the
instances for training and the remaining one-third for test-
ing. This is repeated 20 times and we report the average
result of these 20 runs. The data set, whether in the orig-
inal space or the mass space, is min-max normalized be-
fore an e-SVR model is trained. To select optimal param-
eters for the e-SVR algorithm, we conduct a 5-fold cross
validation based on mean squared error using the training
set only. The kernel parameter « is searched in the range
{2715 2718 o711 ... 93 951 the regularization parameter

=y

0.14 7 0.
. :
0.12 ’ 0.2 0 7,'
[.

—-h=1
h=2
¥ h=3

500 1000 1500
t, number of mass distributions

(a) An example of CBIR-round 5 result.

2000

500
t, number of mass distributions

(b) Effect of h in the Forest data set.

1000 10 100 1000

500
t, number of mass distributions

(c) Effect of h in the Smtp data set.

Figure 5: (a) The retrieval performance and the processing time as t increases for InstR’. (b) High h produces
a poorer detection performance in this case. (c) High h produces a better detection performance in this case.

Table 4: Data characteristics of the data sets in
anomaly detection tasks. The percentage in brack-
ets indicates the percentage of anomalies.

data size u anomaly class
Http 567497 3 attack (0.4%)
Forest 286048 10 class 4 (0.9%) vs class 2
Mulcross | 262144 4 2 clusters (10%)
Smtp | 95156 3 attack (0.03%)
Shuttle 49097 9 classes 2,3,5,6,7 (7%) vs class 1

C in the range {0.1,1, 10}, and € in the range {0.01,0.05,0.1}.
We measure regression performance in terms of mean squared
error (MSE) and squared correlation coefficient (SCC), and
runtime in seconds. The runtime reported is the runtime for
SVR only. The total cost of mass estimation (from the train-
ing set) and mapping (of training and testing sets) is 3.95
seconds in the largest data set, tic. The cost of normalisa-
tion and the parameter search using 5-fold cross-validation
is not included in the reported result for both SVR’ and SVR.

The result is presented in Table 3. SVR’ performs signif-
icantly better than SVR in all data sets in both MSE and
SCC measures; the only exception is in the wine_red data
set. Although SVR' takes more time to run as it runs on the
data with a significantly higher dimension, yet the factor of
increase in time ranges from 2 to 3 only when the factor
of increase in the number of dimensions ranges from 12 to
over 300 (shown in the last two columns of Table 3). This is
because the time complexity in the key optimisation process
in SVR is not dependent on the number of dimensions.

4.3 Anomaly Detection

This experiment compares MassAD with four state-of-the-
art anomaly detectors: isolation forest (or iForest) [10],
a distance-based method ORCA [3], a density-based method
LOF [4], and one-class support vector machine (or 1-SVM)
[13]. MassAD is built with ¢ = 100 and ¢ = 256, the same
default settings as used in iForest [10], which also employs a
multi-model approach. The parameter settings employed for
ORCA and LOF are as stated in [10]. 1-SVM uses Radial Basis
Function kernel and an inverse width parameter estimated
by the method suggested in [5].

All the methods are tested on the five largest data sets
used in [10]. The data characteristics are summarized in
Table 4, which include one anomaly data generator Mulcross
[12] and the other four are from UCI repository [2]. The
performance is evaluated in terms of averaged AUC (area
under ROC curve) and processing time (a total of training

Table 5: AUC values for anomaly detection.
MassAD iForest ORCA LOF 1-SVM
h=8 =256
Http 098 1.00 1.00 0.36 N/A 0.90
Forest 0.88 0.91 0.87 0.83 0.57 0.90
Mulcross | 0.97 0.99 0.96 0.33 0.59 0.59
Smtp 0.86 0.86 0.88 0.87 0.32 0.78
Shuttle | 0.99 0.99 1.00 0.60 0.55 0.79
Table 6: Runtime (second) for anomaly detection.
MassAD iForest ORCA LOF 1-SVM
=8 =256
Http 27 34 147 9487 > 2weeks 35872
Forest 14 18 79 6995 224380 9738
Mulcross | 13 17 75 2512 156044 7343
Smtp 4 7 26 267 24281 987
Shuttle 2 4 15 157 7490 333

time and testing time) over ten runs (following [10]). MassAD
and iForest are implemented in Matlab and tested on an
AMD Opteron machine with a 1.8 GHz processor and 4 GB
memory. The results for ORCA, LOF and 1-SVM are conducted
using the same experimental setting but on a faster 2.3 GHz
machine, the same machine used in [10].

The AUC values of all methods are presented in Table 5
where the figures boldfaced are the best performance for
each data set. The results show that MassAD with ¢ = 256
achieves the best performance on the three largest data sets;
and even on the other two data sets, MassAD is also competi-
tive since the AUC gap is small between MassAD and the best
method, i.e., iForest. It is noteworthy that MassAD signif-
icantly outperforms the traditional density-based, distance-
based and SVM anomaly detectors in all data sets, except
two: one in Smtp when compared with ORCA and another in
Forest when compared with 1-SVM. The above observations
validate the effectiveness of our proposed mass estimation
on anomaly detection tasks.

Table 6 shows the runtime result. Although MassAD is
run on a slower machine, it still has a significant advantage
in term of processing time over ORCA, LOF and 1-SVM. The
comparison with iForest is presented in Table 7 with a
breakdown of training time and testing time. Note that
MassAD takes the same time as iForest in training, but it
only takes about one-tenth of the time required by iForest
in testing. These results show that MassAD is an efficient
anomaly detector.

Figures 5(b) and 5(c) show the effect of h on the detection

Table 7: Training time and testing time (second) for
MassAD and iForest, using ¢ = 100 and ¢ = 256.
Training time Testing time
MassAD iForest | MassAD iForest
Http 20.96 19.72 12.93 127.47
Forest 11.26 11.47 6.97 67.45
Mulcross | 10.54 10.69 6.82 64.34
Smtp 4.97 4.1 2.22 22.39
Shuttle 3.43 3.23 1.01 11.79

performance of MassAD with ¢ = 8—higher h degrades the
detection performance in Forest; but it improves in Smtp.
This shows that for best performance in individual data set,
some parameter tuning is required, like most other algo-
rithms. Note that there is no attempt to tune this parameter
(or any other parameters) in the result reported in Tables
5, 6 and 7 where h = 1 is used throughout.

The time and space complexities for four methods are
given in Table 8. MassAD and iForest have the best time and
space complexities due to their ability to use small ¥ < n
and h = 1. Note that MassAD (h = 1) is faster by a factor
of log(yp = 256) = 8 which shows up in the testing time—
ten times faster than iForest given in Table 7. The training
time disadvantage, compared to iForest, did not show up be-
cause of small ¥. MassAD also has an advantage over iForest
in space complexity by a factor of log(v)).

Table 8: A comparison of time and space complex-
ities. The time complexity includes both training
and testing. n is the given data set size and u is the
number of dimensions. For MassAD and iForest, the
first part of the summation is the training time and
the second the testing time.

Time complexity Space complexity
MassAD | O(t(v" ™' +n)) O(ty)
iForest | O(t(y +n) - log(y)) O(ty - log(v))
ORCA O(un - log(n)) O(un)
LOF O(un?) O(un)

4.4 Constant time and space complexities

In this section, we show that mass(z, h|D) (in step 4 of
Algorithm 1) takes only constant time, regardless of the
given data size n, when the algorithmic parameters are fixed.
Table 9 reports the runtime time for sampling (to get a ran-
dom sample of size 1 from the given data set—steps 2 and
3 of Algorithm 1) and the runtime for mass estimation—to
construct mass(z, h|D) t times, for five data sets which in-
clude the largest and smallest data sets in regression and
anomaly detection tasks.

The results show that the sampling time increases linearly
with the size of the given data set, and it takes a significantly
longer (in the largest data set) than the time to construct the
mass distribution—which is constant, regardless of the given
data size. Note that the training time provided in Table 7
includes both the sampling time and mass estimation time,
and it is dominated by the sampling time.

The memory required for each construction of mass(z, h|D)
is to store one lookup table of size ¥ which is constant, again
independent of the given data size.

Table 9: Runtime (second) for sampling, mass(z,1|D)
and mass(z, 3|D), where t = 1000 and ¢ = 8.

data size sampling mass(z,1|D) mass(z, 3|D)
Http 567497 185.21 0.57 17.15
Shuttle 49097 12.47 0.59 17.37
COREL 10000 2.34 0.53 17.28
tic 9822 2.28 0.56 17.23
concrete 1030 0.36 0.48 17.28
Summary

The above results in all three tasks show that the order-
ings provided by mass distributions deliver additional in-
formation about the data that would otherwise hidden in
the original features. The additional information improves
the task-specific performance significantly, especially in the
information retrieval and regression tasks.

Using Algorithm 3, the runtime is expected to be higher
because the new space has much higher dimensions than the
original space (¢ > w). It shall be noted that the runtime
increase (linearly or worse) is solely a characteristic of the
existing algorithms used, not due to the mass space mapping
which has constant time and space complexities.

We believe that a more tailored approach that better inte-
grates the information provided by mass (into the C3 com-
ponent in the formalism) for the specific task can potentially
further improve the current level of performance in terms of
either task-specific performance measure or runtime. We
have demonstrated this ‘direct’ application using Algorithm
4 for the anomaly detection task, in which MassAD performs
equally well or significantly better than four state-of-the-art
methods in terms of task-specific performance measure, and
it executes faster than all other methods in terms of runtime.

Why does one-dimensional mapping work when tackling
multi-dimensional problems? The mapping transforms each
original feature to approximately % features in the mass
space—unearth hidden information for each original feature.
It is more of a question whether an algorithm can make full
use of this information in the new space; as both the original
and new spaces are multi-dimensional. A multi-dimensional
mapping may better enhance information in some domains.
It is thus worthwhile to explore this extension.

5. RELATION TO KERNEL DENSITY
ESTIMATION

A comparison of mass estimation and kernel density esti-
mation is provided in Table 10.

Table 10: A comparison of kernel density estimation
and mass estimation. Kernel density estimation re-
quires two parameter settings: kernel function K(.)
and bandwidth h,; mass estimation has one: h.

Kernel density(z) = ﬁ S K(5E)

S massi(z, h-1)p(si), h>1

mass(x, h) = { S ma(2)p(si), h=1

Like kernel estimation, mass estimation at each point is
computed through a summation of a series of values from
a mass base function m;(.), equivalent to a kernel function
K(.). The two methods differ in the following ways:

Table 11: CBIR results: Compare with Qsim” and InstR” which use Gaussian kernel density estimation.

BEP (x10~?) Processing time (second)

Qsim’ Qsim” Qsim | InstR’ 1InstR” 1InstR | Qsim’ Qsim” Qsim | InstR” InstR” InstR

One Query | 10.31 2.51 7.78 | 10.31 2.51 7.78 | 0.410 0.409 0.034 | 0.410 0.409 0.034
Round 1 15.39 272 10.59 | 13.45 2.66 9.40 | 0.588 0.633 0.078 | 0.558 0.571 0.046
Round 2 17.46 2.67 11.81 | 15.07 2.51 9.99 | 0.646 0.780 0.139 | 0.559 0.574 0.047
Round 3 18.46 256 12.59 | 16.15 2.31 10.36 | 0.737 0.989 0.227 | 0.560 0.577 0.048
Round 4 19.18 2,53 13.16 | 16.96 2.20 10.78 | 0.862 1.275 0.355 | 0.561 0.580 0.049
Round 5 19.62 246 13.55 | 17.62 2.07 11.05 | 1.016 1.629 0.516 | 0.562 0.582 0.050

Table 12: Anomaly detection: MassAD vs DensityAD.

AUC Time (second)
MassAD DensityAD | MassAD DensityAD
Http 1.00 0.99 34 33
Forest 0.91 0.69 18 18
Mulcross 0.99 1.00 17 17
Smtp 0.86 0.60 7 7
Shuttle 0.99 0.92 4 4

e Aim: Kernel estimation is aimed to do probability density
estimation; whereas mass estimation is to estimate an
order from the core points to the fringe points.

e Kernel function: While kernel estimation can use differ-
ent kernel functions for probability density estimation;
we doubt that mass estimation requires a different base
function for two reasons. First, a more sophisticated
function is unlikely to provide a better ordering than
a simple rectangular function. Second, the rectangu-
lar function keeps the computation simple and fast. In
addition, a kernel function must be fixed (i.e., having
user-defined values for its parameters); e.g., the rect-
angular kernel function has fixed width or fixed per
unit size. But the rectangular function used in mass
has no parameter and no fixed width.

e Sample size: Kernel estimation or other density estima-
tion methods require a large sample size in order to
estimate the probability accurately [7]. Mass estima-
tion using mass(xz, h|D) needs only a small sample size
in an ensemble to accurately estimate the ordering.

e Definition: Probability density can be defined indepen-
dent of data, whereas mass (in its current form) must
be defined w.r.t. a set of data.

Because of a lack of concavity, density will not perform as
successfully as mass. Here we present the results using a
Gaussian kernel density estimation, replacing mass(z, h|Dy),
using the same subsample size in an ensemble approach. The
bandwidth parameter is set to be the standard deviation of
the subsample; and all the other parameters are the same.

The results for information retrieval and anomaly detec-
tion are provided in Tables 11 and 12. Compare to mass,
density performs significantly worse in information retrieval
task in all experiments using Qsim and InstR, denoted as
Qsim” and InstR”, respectively. They are even worse than
those run in the original space. In anomaly detection, Den-
sityAD, which uses a Gaussian kernel density estimation,
performs significantly worse than MassAD in three out of five
data sets in the anomaly detection tasks, and equally well
in the other two data sets.

6. RELATED WORK

There is a close relationship between the proposed mass
and data depth [11]: they both delineate the centrality of a
data cloud (as opposed to compactness in the case of den-
sity.) The properties common to both measures are: (a) the
centre of a data cloud has the maximum value of the mea-
sure; (b) an ordering from the centre (having the maximum
value) to the fringe points (having the minimum values).

However, there are three fundamental differences. First,
data depth can deal with unimodal data only; whereas mass
can deal with both unimodal and multi-modal data by set-
ting h=1or h > 1.

Second, mass is a simple and straightforward measure,
and has an efficient estimation method; whereas data depth
has many different definitions, depending on the construct
used to define depth. The constructs could be Mahalanobis,
Convex Hull, simplicial and so on [11], all of which are expen-
sive to compute [1]—this has been the main obstacle in ap-
plying data depth for real applications in multi-dimensional
problems. In addition, the centre of a data cloud varies de-
pending on the construct used to define data depth; whereas
mass (h = 1) always has the centre located at the mid-point
in the series of data points.

Third, the A = 1 mass estimation guarantees concavity—
the reason why a simple mass space mapping improves the
task-specific performance of four existing algorithms in in-
formation retrieval and regression tasks. In contrast, there
is no such guarantee in data depth. Because of a lack of con-
cavity, like density, data depth is unlikely to be as successful
as mass in the three tasks we have reported here, even if we
ignore the runtime issue.

Mass estimation can be implemented in different ways.
For example, we have reported an implementation using a
tree structure (instead of a lookup table) in [15] using Half-
Space Trees. It reduces the time complexity to O(th(¢+n))
from O(t(y"*! 4+ n)), making it feasible for very high level-
h mass estimation. We have repeated the experiments re-
ported in this paper using Half-Space Trees, and it produces
almost identical results.

Half-Space Trees extends naturally from one-dimensional
mass estimation to multi-dimensional mass estimation. This
has been tested in anomaly detection task [15].

iForest [10] and MassAD shares some common features:
Both are ensemble methods which build ¢ models, each from
a random sample of size 1), and they both combine the out-
puts of the models through averaging during testing. Al-
though iForest [10] is designed specifically for anomaly de-
tection which employs path length—an instance traverses
from the root of a tree to its leaf—as the anomaly score, we
have shown in [15] that the path length used in iForest is
in fact a proxy to mass. In other words, iForest is a kind of

mass-based method—that is why MassAD and iForest have
similar detection accuracy.

We have already established a direct application of mass
in content-based image retrieval [17]. In addition to the
mass-space mapping we have shown here, [17] presents a
framework that assigns a weight (based on iForest, thus,
mass) to each feature w.r.t. a query image; and then it ranks
images in the database according to their weighted average
feature values. The framework also incorporates relevance
feedback which modifies the ranking based on the feedbacks
through reweighted features. This framework makes use of
all three components of the formalism stated in Section 3.
This direct application of mass performs significantly better
than the indirect approach we have shown in Section 4.1,
in terms of both retrieval performance and processing time.
Like MassAD, no distance calculations are used at all—the
key reason for its superior time complexity.

7. CONCLUSIONSAND FUTURE WORK

This paper makes two key contributions. First, we intro-
duce a base measure, mass, and delineate its three prop-
erties: (i) a mass distribution stipulates an ordering from
core points to fringe points in a data cloud; (ii) this order-
ing accentuates the fringe points with a concave function—
the essential property that is easily exploited by existing
algorithms to improve their task-specific performance; and
(iii) it is a constant-time-and-space-complexities estimation
method. Density estimation has been the base modelling
mechanism employed in many techniques thus far. Mass es-
timation introduced here provides an alternative choice, and
it is better suited for many tasks which require an ordering
rather than probability density estimation.

Second, we present a mass-based formalism which forms a
basis to apply mass for different tasks. The three tasks (i.e.,
information retrieval, regression and anomaly detection) in
which we have successfully applied are just examples of its
application. Mass estimation has potentials in applications
as diverse as density estimation has applied now.

There are potential extensions to the current work. First,
one shall consider a new way to best utilise mass when solv-
ing a problem. In other words, we advocate a direct appli-
cation of mass, rather than an indirect application. Second,
the algorithms provided here for the three tasks are by no
means definitive, and even the formalism can be improved
or extended to include more tasks. Third, because the pur-
poses and their properties differ, mass estimation is not in-
tended to replace density estimation—it is thus important
to identify areas in which each is best suited for. This will
ascertain areas in which density has been a mismatch, un-
beknown thus far.

Acknowledgements

This work is partially supported by the Air Force Research
Laboratory, under agreement# FA2386-10-1-4052. The U.S.
Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright
notation thereon. Phil Rayment, David Albrecht, Zhouyu
Fu and Geoff Webb have provided many helpful comments in
the early draft. Suggestions from the anonymous reviewers
have helped to improve the clarity of this paper.

The Matlab source code of mass estimation is available
at http://sourceforge.net/projects/mass-estimation/.

8. REFERENCES

[1] G. Aloupis. Geometric measures of data depth.
DIMACS Series in Discrete Math and Theoretical
Computer Science, 72:147-158, 2006.

[2] A. Asuncion and D. Newman. UCI machine learning
repository, 2007.

[3] S. D. Bay and M. Schwabacher. Mining distance-based
outliers in near linear time with randomization and a
simple pruning rule. In Proceedings of SIGKDD, pages
29-38, 2003.

[4] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander.
LOF: Identifying density-based local outliers. In
Proceedings of SIGKDD, pages 93-104, 2000.

[5] B. Caputo, K. Sim, F. Furesjo, and A. Smola.
Appearance-based object recognition using svms:
which kernel should i use? In NIPS workshop on
Statitsical methods for computational experiments in
visual processing and computer vision, 2002.

[6] C.-C. Chang and C.-J. Lin. LIBSVM: a library for
support vector machines, 2001.

[7] R. Duda, P. Hart, and D. Stork. Pattern
Classification. Second Edition. John Wiley, 2001.

[8] G. Giacinto and F. Roli. Instance-based relevance
feedback for image retrieval. In Advances in NIPS,
pages 489-496, 2005.

[9] J. He, M. Li, H. Zhang, H. Tong, and C. Zhang.
Manifold-ranking based image retrieval. In Proceedings
of ACM Multimedia, pages 916, 2004.

[10] F. T. Liu, K. M. Ting, and Z.-H. Zhou. Isolation
forest. In Proceedings of ICDM, pages 413-422, 2008.

[11] R. Liu, J. M. Parelius, and K. Singh. Multivariate
analysis by data depth. The Annals of Statistics,
27(3):783-840, 1999.

[12] D. M. Rocke and D. L. Woodruff. Identification of
outliers in multivariate data. Journal of the American
Statistical Association, 91(435):1047-1061, 1996.

[13] B. Schélkopf, R. C. Williamson, A. J. Smola,

J. Shawe-Taylor, and J. C. Platt. Support vector
method for novelty detection. In Advances in NIPS,
pages 582-588, 2000.

[14] J. S. Simonoff. Smoothing Methods in Statistics.
Springer-Verlag, 1996.

[15] K. M. Ting, S. C. Tan, and F. T. Liu. Mass: A new
ranking measure for anomaly detection. Gippsland
School of Information Technology, Monash University,
Technical Report TR2009/1, 20009.

[16] V. N. Vapnik. The Nature of Statistical Learning
Theory. Second Edition. Springer, 2000.

[17] G.-T. Zhou, K. M. Ting, F. T. Liu, and Y. Yin.
Relevance feature mapping for content-based image
retrieval. In Proceedings of Multimedia Data Mining
Workshop at KDD, 2010.

[18] Z.-H. Zhou, K.-J. Chen, and H.-B. Dai. Enhancing
relevance feedback in image retrieval using unlabeled
data. ACM Transactions on Information Systems,
24(2):219-244, 2006.

[19] Z.-H. Zhou and H.-B. Dai. Query-sensitive similarity
measure for content-based image retrieval. In
Proceedings of ICDM, pages 1211-1215, 2006.

